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Abstract. Inspired by recent developments of moose models, we reconsider low-energy effective theories of
Goldstone bosons, gauge fields and chiral fermions applied to low-energy QCD and to Higgs-less electroweak
symmetry breaking. Couplings and the corresponding reduction of symmetry are introduced via constraints
enforced by a set of non-propagating covariantly constant spurion fields. Relics of the latter are used as
small expansion parameters conjointly with the usual low-energy expansion. Certain couplings can only
appear at higher orders of the spurion expansion and, consequently, they become naturally suppressed
independently of the idea of dimensional deconstruction. At leading order this leads to a set of generalized
Weinberg sum rules and to the suppression of non-standard couplings to fermions in Higgs-less EWSB
models with the minimal particle content. Within the latter, higher spurion terms allow for a fermion mass
matrix with the standard CKM structure and CP violation. In addition, Majorana masses for neutrinos
are possible. Examples of non-minimal models are briefly mentioned.

1 Introduction

In a low-energy effective theory (LEET) [1], the require-
ment of naturalness [2] plays a central role in defining a sys-
tematic low-energy expansion that is finite order-by-order
despite the lack of renormalizability and a bad high-energy
behavior. LEET operates with light degrees of freedom,
which become massless in a particular limit, due to chiral
and/or gauge symmetries. The lagrangian is constructed
and renormalized order-by-order in a momentum expan-
sion. Naturalness then amounts to the requirement that
at each order the lagrangian contains all terms allowed by
the symmetries and by the power counting. The simplest
example is chiral perturbation theory (χPT) [3, 4] – the
low-energy effective theory of QCD. It merely operates with
Goldstone bosons of spontaneously broken chiral symme-
try. Since in this case, the high-energy completion of the
effective theory (i.e. QCD) is known, the O (p4

)
low-energy

constants (LECs) can be put under partial phenomenolog-
ical control.

In this article, we are particularly concerned with more
complicated effective theories which, in addition to Gold-
stone bosons, also contain gauge fields. For some time this
type of LEET was hoped to describe electroweak symme-
try breaking (EWSB) resulting from the dynamical Higgs
mechanism [5,6]. Especially interesting was the possibility
of EWSB with no scalar particles remaining in the spec-
trum. The question whether a natural and phenomenolog-
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ically viable LEET of EWSB without scalar relics exists is
still of interest today as it would represent an alternative to
the standard interpretation of electroweak precision tests
as constraints on the Higgs mass [7]. Unfortunately, this
type of effective theories lacks predictivity at O (p4

)
or-

der (i.e. one loop), since its high-energy completion is not
known: the values of the renormalized O (p4

)
LECs can

so far only be discussed within particular models such as
“rescaled QCD” [8], or the gauged linear sigma model in
the heavy-mass limit [9–12]. Beyond those models, it seems
premature to conclude that a generic Higgs-less LEET of
EWSB is at variance with precision electroweak tests. On
the other hand, already at leading O (p2

)
order, not all

couplings one may construct in a generic Higgs-less effec-
tive theory based on the symmetry arguments alone are
actually observed.
(i) Tree-level O (p2

)
contributions to the S parameter are

in principle possible.
(ii) There are non-standard couplings to fermions, which
would spoil universality of the left-handed couplings and
introduce right-handed couplings of the W±. This is un-
acceptable at leading order and the problem we address
is that of suppressing those non-standard couplings natu-
rally.
(iii) Last but not least, let us mention the long-standing
problem of fermion masses and flavor symmetry breaking.
Indeed, within Higgs-less effective theories it has always
been difficult to have, at leading order, mass splittings
within a doublet of the same order of magnitude as the
masses themselves.
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All these problems suggest that something else should
be added to the momentum expansion based on the low-
energy symmetry SU (2) × U (1)Y in order to construct
natural Higgs-less effective theories of EWSB.

It is interesting to note that a similar problem in prin-
ciple arises if the low-energy effective theory of QCD is
extended beyond the pure χPT framework towards higher
energies, incorporating vector and axial vector states. If the
latter are included among protected light states of a LEET,
they should be treated as weakly coupled gauge particles
(although such a scenario need not be realistic for finite-
Nc QCD, we are going to use it as a simple theoretical
laboratory; H. Georgi, Nucl. Phys. B 331, 311 (1990). If
in the corresponding LEET all terms allowed by the chi-
ral symmetry were kept [13, 14], the Weinberg sum rules
(WSRs) [15] would be lost. In QCD, the latter do not follow
from chiral symmetry alone, but hinge strongly on short-
distance properties of the theory. Within LEET this leads
once more to the problem mentioned in connection with
EWSB: how to naturally suppress unwanted terms in order
to recover the two Weinberg sum rules and obtain finite
radiative masses for pseudo-Goldstone bosons (PGBs).

Our starting point is therefore a recent discussion of the
two Weinberg sum rules [16], based on moose models [17].
The model considered consists in a chain of Goldstone
bosons of spontaneously broken chiral symmetries coupled
in a particular way to gauge fields. Not all couplings al-
lowed by the symmetries and low-energy power counting
are admitted, leading to a better high-energy behavior than
one might expect in effective theories exclusively based on
the low-energy symmetries. The literature does not relate
these properties to a requirement of symmetry. Indeed, the
standard line of thinking has been that of dimensional de-
construction [18,19], in which case unwanted terms in the
lagrangian are omitted on a physical basis: the requirement
of locality along the fifth (discretized) dimension. Only in-
teractions between nearest neighbors along the moose are
then allowed. What happens at higher orders is then un-
clear: such terms will be generated and one can question
whether it is a licit procedure to omit them altogether in
the first place.

Whatwewould like to demonstrate here is the feasibility
and the usefulness of an alternative bottom-up approach,
without reference to a five-dimensional theory. Instead we
will focus on an approach which is closely linked with the
naturalness hypothesis formulated by ’t Hooft [2], that is,
relying on the symmetries of the theory. Our formulation
will make extensive use of non-propagating fields – called
spurions – within the LEET [1,3], in order to keep track of
the reduction of symmetry when the gauge couplings are
introduced. These spurions and the constraints applied on
them serve the purpose of introducing couplings by restrict-
ing the configuration space of gauge connections, while at
the same time allowing the use a lagrangian which is invari-
ant under the full symmetry. Spurions have been employed
in the past in various contexts: explicit chiral symmetry
breaking due to quark masses [1, 3], introduction of elec-
tromagnetic couplings in χPT [20,21], radiative masses of
PGBs [22], and also linear moose models [23]. In [23], spuri-

ons were used to formally count the occurrences of coupling
constants in connection with radiative corrections to PGBs
masses once the unwanted couplings have been dismissed.
At the end, the spurions of [23] are set to one. In this
paper we go one step further: we consider covariantly con-
stant spurions as small expansion parameters which are a
genuine part of the effective theory, allowing for a natu-
ral suppression of unwanted couplings between Goldstone
bosons and gauge fields. The LEET will be constructed as
a simultaneous expansion in powers of momenta, (gauge)
couplings and spurions [1,3,4,21]: unwanted couplings will
be suppressed since they only appear at higher orders of the
spurion expansion. The spurion formalism developed in this
paper represents a general device to couple SU (2)×SU (2)
Goldstone bosons and SU (2) gauge fields. As such, it ap-
plies both to effective theories of QCD and of Higgs-less
EWSB. This is the main reason why these apparently dis-
tinct subjects are discussed jointly within the same paper.
This paper is organized as follows.

In Sect. 2 we introduce real covariantly constant spu-
rions in the general linear moose model based on SU (2)
groups. We then perform appropriate field redefinitions to
study the spectrum of the theory, which consists in a mul-
tiplet of Goldstone bosons and a tower of massive vectors.

In Sect. 3,we consider the left–right two-point correlator
and show that, at leading order in the spurion expansion,
and in the tree-level approximation (cf. the large-Nc limit of
QCD), it automatically satisfies K generalized Weinberg
sum rules, where K is the length of the moose. Higher
spurion terms introduce corrections to theseWSRs.Wegive
the expression for L10, which is related to the S parameter
of the electroweak sector.

In Sect. 4, we consider in detail the Higgs-less effective
EWSB theory with a minimal particle content: electroweak
bosons and fermions. There are no scalar particles below the
scale 4πf (f � 250 GeV) where the effective theory breaks
down. The minimal set of spurions needed to select the
reduced symmetry SU (2)×U (1)Y out of a larger SU (2)4×
U (1)B−L natural symmetry is discussed. It is shown how
a complex spurion selects the correct U (1) subgroup and
describes weak isospin breaking effects. The suppression
of all non-standard couplings to fermions is demonstrated
at the leading order of the spurion expansion. It is further
shown that spurions allow the introduction of fermion mass
matrices with a general CKM structure and CP violation.

In Sect. 5we describe twonon-minimalmodels of EWSB
based on extension of the moose of Sect. 4. The first of
these two models contains W ′ and Z ′ excited vectors. Our
purpose is to exhibit what the first corrections to theS, T, U
parameters might be. Our last model does not contain
excited vectors in the low-energy sector, but rather a triplet
of PGBs. We illustrate the role of the Weinberg sum rules
discussed in Sect. 3, in relation with the radiative masses of
these PGBs. This last model provides an example of light
scalars which do not play the same role as the standard
Higgs boson. Again, we introduce fermions in the model and
discuss the consequences of the spurion power counting.

We summarize our findings in Sect. 6.
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Σ0,1

Σ1,2 Σ2,3

L0 R3R1 G1 L1 R2 G2 L2

Fig. 1.1. Three non-linear sigma models and two Yang–Mills theories

2 Spurions and mooses

In this section, the open linear moose is studied at lowest
order in the momentum expansion and lowest order in the
spurion power counting: interactions between Goldstone
bosons and gauge fields are introduced via constraints im-
posed on spurions embodying the principle of naturalness.
Indeed, we start with a theory with Goldstone multiplets
and gauge fields. When the parameters are sent to the
appropriate limits, the separate theories do not interact
anymore. Consequently, it is sensible to consider an ex-
pansion where the parameters are close to these limits:
this is both a well-defined expansion from the practical
point of view and a meaningful one in the sense that the
symmetry is increased when the parameters are set to be
equal to the aforementioned limits. This in turn makes
it logically plausible that an underlying theory produces
this set of values for the parameters without fine-tuning
because the symmetry preserves this situation from ob-
taining large corrections. We want to build a perturbative
expansion around the limit where the Goldstone bosons do
not interact with the gauge fields: the moose is then dis-
connected.

In order to disentangle the disconnected limit from the
case when the gauge coupling constants are taken to zero,
we are compelled to introduce a set of additional param-
eters, which can be taken to zero independently. These
parameters will in fact derive from spurion fields, which
render the theory invariant under a larger symmetry group:
the group of transformations where the chiral transforma-
tions on the Goldstone fields are independent of the gauge
transformations. From this we may deduce how the spuri-
ons will have to transform. We find that the connections
corresponding to the chiral transformations on the Gold-
stone fields and the gauge connections become identified,
and that the spurions reduce to constants, which will be-
come our small expansion parameters.

In this section, we focus on spurions satisfying, in ad-
dition to the constraint of covariant constancy, a reality
condition. This will allow for each SU (2)2 symmetry under
which the spurion transforms to be restricted to SU (2).
Later on in Sects. 4 and 5, we will add complex spurions
in order to reduce the symmetry further to U (1).

2.1 Goldstone bosons and gauge fields

We consider K + 1 independent non-linear sigma mod-
els, each describing the spontaneous breakdown SU (2) ×
SU (2) −→ SU (2). In addition, we considerK independent
Yang–Mills theories with gauge group SU (2). We will de-
scribe the general case, leaving K as a free parameter, but
will pick the particular case with K = 2 for definiteness in
order to draw diagrams in this section, such as Fig. 1.1. This

diagram describes the symmetries of the model: for this
particular case, we really have five completely independent
theories at this stage.The three non-linear sigmamodels are
depicted as oriented links between two squares representing
the transformation operating on the Goldstone multiplets.
For instance the left-most item in the figure represents the
fact that the unitary matrix Σ0,1 transforms as

Σ0,1 �−→ L0Σ0,1R
†
1, (2.1)

with (L0, R1) ∈ SU(2) × SU (2). The two gauge groups
are represented by circles, and in fact the circle labeled
G1 means that the gauge transformation on the hermitian
gauge field G1µ is given by

G1µ �−→ G1G1µG
†
1 +

i
g1
G1∂µG

†
1, (2.2)

with G1 ∈ SU (2). The positioning and naming of the
various elements in the diagram is irrelevant at this stage,
although the different pieces will be connected later on to
form a chain.

Coming back to the general case, we point out that the
model we have just introduced possesses the symmetry

Snatural,K

=
K∏

l=1

SU (2)Gl
×

K∏
k=0

SU (2)Lk
× SU (2)Rk+1

, (2.3)

under which the fields transform as

Σk,k+1 �−→ LkΣk,k+1R
†
k+1, for k = 0, . . . ,K,(2.4)

Gkµ �−→ GkGkµG
†
k +

i
gk
Gk∂µG

†
k,

for k = 1, . . . ,K, (2.5)

where we have introduced the SU (2) transformations Lk,
Rk, Gk. The standard practice consists in considering lo-
cal chiral transformations Lk, Rk, in order to define the
generating functional for the Noether currents of the cor-
responding symmetries [3, 4]. We will rely heavily on this
in the following and we therefore introduce the following
covariant derivatives:

DµΣk,k+1 = ∂µΣk,k+1 − iLkµΣk,k+1 + iΣk,k+1Rk+1µ,

for k = 0, . . . ,K, (2.6)

where the Lkµ and Rkµ are sources.
Now, we want to build a LEET characterized by an ex-

pansion in powers of momenta, the momentum scale being
set by the momenta of light external particles. Therefore,
we assume slowly varying external sources and consider an
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Σ0,1

X1 Y1 Σ1,2 X2 Y2 Σ2,3

L0 R3R1 G1 L1 R2 G2 L2

Fig. 2.1. Introduction of spurions in the model of Sect. 2.1

expansion in powers of derivatives. In order to write down
the most general lagrangian consistent with the symmetry
Snatural,K of the problem, we note that if one performs
the following transformations on the sources under the full
group Snatural,K :

Lkµ �−→ LkLkµL
†
k + iLk∂µL

†
k, (2.7)

Rkµ �−→ RkRkµR
†
k + iRk∂µR

†
k, (2.8)

then the effective lagrangian must be invariant in order to
reproduce the Ward identities of the theory [24], up to pos-
sible fermion anomalies [25], which only impact the next-
to-leading order in the momentum expansion [3,4]. We use
the appropriate power counting for covariant derivatives
and gauge fields [21,52]:

gk = O (p1) , (2.9)

Gkµ = O (p0) , (2.10)

Lkµ, Rkµ = O (p1) , (2.11)

defined to have the connections and derivatives counted
on the same footing, in order to obtain a covariant expan-
sion order-by-order, and to have the kinetic terms for the
dynamical gauge fields appear at the same order as that
for the Goldstone bosons. Alternatively, one may consider
the normalization of states for this last step. With these
rules we get at lowest order in the expansion in powers of
momenta, that is to say at O (p2

)
, the following lagrangian:

L = (2.12)

1
4

K∑
k=0

f2
k

〈
DµΣk,k+1D

µΣ†
k,k+1

〉
− 1

2

K∑
k=1

〈GkµνG
µν
k 〉 .

In the above, the usual definition for the field-strength ap-
plies

Gkµν = ∂µGkµ − ∂νGkµ − igk [Gkµ, Gkν ] ,

for k = 1, . . . ,K, (2.13)

and the symbol 〈. . .〉 denotes the trace of the two-by-
two matrices.

2.2 Couplings along the chain

We now wish to introduce couplings between the Goldstone
multiplets via interactions with gauge fields. However, the
lagrangian (2.12) does not describe interactions between
the disconnected elements of Fig. 1.1, nor does it suggest
any line-ordering either, except for the relative positions
we have chosen for the purpose of the diagram. To remedy

this, we now introduce couplings between the independent
theories, not by adding new interaction terms, but by re-
stricting fields in the lagrangian through constraints1.

With this objective in mind, we now consider spurions,
which we introduce as non-propagating fields satisfying
some constraints. These constraints will restrict the allowed
space of gauge configurations. In other words, they imply
identifications between various symmetry transformations
operating on the model, while enabling us to keep the full
invariance group Snatural,K of the original theory.

2.2.1 Real spurions

In this section, we introduce spurions as two-by-two matrix-
valued fields Xk, Yk for k = 1, . . . ,K, subject to a reality
condition. The constraint of covariant constancy is then
imposed on them. We show that one can find a gauge
in which the spurions reduce to real constants times the
identity matrix

Xk|const.= ξk12×2, (2.14)

Yk|const.= ηk12×2. (2.15)

The constants ξk, ηk are assumed to be small, and taken as
expansion parameters. The constraints are solved in this
gauge to yield

Ra
kµ

∣∣
const.

= gkG
a
kµ, for a = 1, 2, 3, (2.16)

La
kµ

∣∣
const.

= gkG
a
kµ, for a = 1, 2, 3, (2.17)

implying that the connections are identified, thereby in-
troducing the couplings of Goldstone fields to gauge fields.
The Gk transformation is unconstrained.

We now proceed to describe the spurions and the con-
straints, before solving these: in the setting of Sect. 2.1, we
introduce the matrices Xk, Yk with the assumed transfor-
mation properties

Xk �−→ RkXkG
†
k, for k = 1, . . . ,K, (2.18)

Yk �−→ GkYkL
†
k, for k = 1, . . . ,K, (2.19)

as depicted in Fig. 2.1 (compare Fig. 1.1). These spurions
serve the purpose of relating the gauge transformations
with the chiral transformations operating on the Goldstone
multiplets. In relation with the hypothesis of naturalness
and the limit in which the Goldstone bosons and the gauge
fields do not interact with each other, we will consider the
case where the entries in these spurions are functions with
a small modulus, and therefore consider

Xk, Yk = O (ε) , for k = 1, . . . ,K, (2.20)
1 This is quite standard: for instance the non-linear sigma

model itself introduces interactions in this manner.
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where ε is by assumption a small parameter. We have as-
sumed the simplest situation here, considering all spurions
to be of the same order of magnitude. This is however not
necessarily the case, and at this point we have no way of de-
ciding what the appropriate counting is. We will therefore
continue with this simple assumption.

In order to introduce the gauge couplings to the Gold-
stone bosons via the identification of connections, we now
demand that the spurions satisfy a constraint. Since we
want the spurions to reduce to constants once the con-
straints are enforced while maintaining a covariant formu-
lation and at the same time identifying the connections,
it seems natural to impose the condition of covariant con-
stancy2

DµXk = 0, for k = 1, . . . ,K, (2.21)

DµYk = 0, for k = 1, . . . ,K. (2.22)

From (2.18) and (2.19) we deduce that the covariant deriva-
tives in the above equations are given by

DµXk = ∂µXk − iRkµXk + igkXkGkµ, (2.23)

DµYk = ∂µYk − igkGkµYk + iYkLkµ. (2.24)

Notice that the constraints (2.21) and (2.22) restrict both
the gauge connections contained in the covariant deriva-
tives and also the non-propagating fields. Now, the nature
of the spurion fields itself impacts the way the full symme-
try is reduced: we consider in this section the simplest case,
imposing the following reality condition on the spurions:

Xc
k = Xk, for k = 1, . . . ,K, (2.25)

Y c
k = Yk, for k = 1, . . . ,K, (2.26)

where we have defined the conjugateXc of any two-by-two
matrix X as

Xc = τ2X∗τ2. (2.27)

Note that the reality conditions (2.25) and (2.26) are com-
patible with the transformations (2.18) and (2.19). This
fact, as well as the reality condition itself, is specific to the
group SU (2). The reality conditions (2.25) and (2.26) are
in fact equivalent to the statement that we may write

Xk = ξkUk, for k = 1, . . . ,K, (2.28)

Yk = ηkVk, for k = 1, . . . ,K, (2.29)

where ξk, ηk are real functions and Uk and Vk are SU (2)
matrices. From (2.20) we see that the small parameter is
the magnitude of the functions ξk, ηk:

ξk, ηk = O (ε) , for k = 1, . . . ,K. (2.30)

In order to demonstrate our claims (2.14)– (2.17), we per-
form an SU (2)Rk

transformation with the following pa-
rameter:

Rk = U†
k . (2.31)

2 Note that such a constraint could be enforced using La-
grange multipliers. For this simple application, we find it more
convenient to impose it by hand.

Identifying the components in the constraint (2.21) one
then obtains that Xk is written as in (2.14), with

∂µξk = 0, (2.32)

aswell as the result announced in (2.16). Following the same
steps for Yk, with the SU (2)Lk

transformation given by

Lk = Vk, (2.33)

to write Yk in the form of (2.15), we find that the constraint
results in

∂µηk = 0, (2.34)

together with (2.17). Thus, the constraints can be solved
easily in the gauge reached by the transformations (2.31)
and (2.33), where they imply the identification of the con-
nections with the gauge fields.

Note that we did not have to use the gauge transforma-
tion Gk corresponding to the dynamical gauge field. This
SU (2) gauge field by itself is therefore free of any con-
straints. On the other hand, we have performed Rk and Lk

transformations, and the corresponding parameters are no
more independent. Hence, we see that the real spurions se-
lect in the original Snatural,K group the following subgroup
which we denote by Sreduced,K :

Sreduced,K (2.35)

= SU (2)L0
× SU (2)RK+1

×
K∏

k=1

SU (2)Rk+Gk+Lk
.

A subgroup of this,

Sdynamical,K =
K∏

k=1

SU (2)Rk+Gk+Lk
, (2.36)

corresponds to dynamical gauge fields which propagate:
this is the subgroup which is “gauged”. Sreduced,K coincides
with the group leaving invariant the solution (2.14)– (2.17)
of the constraints (2.21) and (2.22) .DefiningSnatural,K (2.3)
as the maximal symmetry of a given set of uncoupled Gold-
stone bosons and Yang–Mills fields (c.f. Fig. 1.1), the list
of spurions needed to operate the reduction of Snatural,K
to Sreduced,K appears to be fixed essentially uniquely.

For the moment, we have not introduced any spurions
transforming under either L0 or RK+1 and an additional
dynamical gauge group. We will consider this in Sects. 4 and
5, and these additional gauge groups will then be identified
with the weak gauge groups. To achieve the proper gauge
group reduction, we will be interested in generic spurions
for which the reality condition is dropped. This will leave us
with the U (1) subgroup of SU (2), but for this section and
Sect. 3, we limit ourselves to cases where the symmetry
groups at the end of the moose are not dynamical.

2.2.2 Leading-order lagrangian

Imposing the constraints can be diagrammatically repre-
sented by the modification of Fig. 2.1 into a new – reduced



452 J. Hirn, J. Stern: The role of spurions in Higgs-less electroweak effective theories

Σ0,1 Σ1,2 Σ2,3

L0 R3G1 G2

Fig. 2.2. The “reduced” diagram for the model depicted in
Fig. 2.1, after imposing the constraints

– notation describing the same model, as shown in Fig. 2.2.
This representation of the moose is closer to the standard
one found in the literature [16,18]: it describes the moose
after application of the constraints, which we will call the
“constrained” moose. Note that some information is lost
with this diagram as there is no trace of the spurions, which
will nonetheless play a prominent role in the sequel.

We also introduce a new notation for the covariant
derivative acting on the Goldstone multiplets when the
solution to the constraints in the standard gauge as defined
in Sect. 2.2.1 is injected, for k = 1, . . . ,K − 1,

∇µΣk,k+1 = DµΣk,k+1|const. (2.37)

= ∂µΣk,k+1 − igkGkµΣk,k+1 + igk+1Σk,k+1Gk+1µ,

and for the ends of the moose

∇µΣ0,1 = DµΣ0,1|const. (2.38)

= ∂µΣ0,1 − iL0µΣ0,1 + ig1Σ0,1G1µ,

∇µΣK,K+1 = DµΣK,K+1|const. (2.39)

= ∂µΣK,K+1 − igKGKµΣK,K+1 + iΣK,K+1RK+1µ.

Now, we may write the leading-order lagrangian, that is
the O (p2ε0

)
lagrangian. In fact, all the terms of this order

are already collected in (2.12). This O (p2ε0
)

lagrangian,
in which the spurions do not appear explicitly, is repro-
duced here

L(2,0) (2.40)

=
1
4

K∑
k=0

f2
k

〈
DµΣk,k+1D

µΣ†
k,k+1

〉
− 1

2

K∑
k=1

〈GkµνG
µν
k 〉 .

The point of this spurion formalism is the following: before
we impose the constraints (2.21) and (2.22), the Goldstone
bosons do not know about the gauge fields. It is only upon
injection of the solution to these constraints that we find
interactions between the Goldstone bosons and the gauge
fields. With the help of the definitions (2.37)– (2.39) for
the ∇µ covariant derivatives, we obtain the following “con-
strained” O (p2ε0

)
lagrangian:

L(2,0)
∣∣∣
const.

(2.41)

=
1
4

K∑
k=0

f2
k

〈
∇µΣk,k+1∇µΣ†

k,k+1

〉
− 1

2

K∑
k=1

〈GkµνG
µν
k 〉 .

Here, the Gkµ connections are dynamical fields while L0µ

and RK+1µ (appearing in the ∇µ operator acting on Σ0,1
and ΣK,K+1) are the sources enabling us to define the

Noether currents of the chiral SU (2)L0
×SU (2)RK+1

sym-
metry of this model. We thus get at this order exactly the
same lagrangian as is assumed in the case of dimensional
deconstruction, and the property of locality along the lin-
ear moose is also evident. The interest of this approach
has to do with the additional terms at non-leading order
in powers of ε: using the spurion expansion, we are in a
position to determine which terms will appear next. Indeed
the number of spurions required to turn the terms allowed
by the Sreduced,K symmetry into terms invariant under the
full Snatural,K symmetry gives us the order at which the
corresponding term should appear. We now briefly describe
these additional terms.

2.2.3 Structure of the effective lagrangian

Having described the spurion formalism to be used in the
context of effective theories, we now go back to the prob-
lem of writing down the most general lagrangian satisfying
our requirements of symmetry: invariance underSreduced,K .
If we now add the requirement of naturalness, our previ-
ous discussions show that this implies invariance under
Snatural,K and therefore involves spurions.

In order to write the most general effective lagrangian,
we will use the fact that all terms which are invariant under
the fullSnatural,K symmetry qualify as terms in our effective
lagrangian. Such terms may be found by forming suitable
combinations of building blocks which are covariant un-
der the chiral transformations

∏K
k=0 SU (2)Lk

×SU (2)Rk+1

acting on the Goldstone fields. One can then also apply
covariant derivatives. Examples of such building blocks are

XkYk �−→ RkXkYkL
†
k, (2.42)

XkGkµνYk �−→ RkXkGkµνYkL
†
k. (2.43)

We are also interested in classifying the terms in this
lagrangian, following a double expansion: the usualmomen-
tum expansion and simultaneously an expansion in powers
of spurions. After we have written down the full lagrangian,
we may “reduce” the terms by going to our standard gauge
as described in Sect. 2.2.1 and then inject the solution to
the constraints to see what the dynamical content of the
new terms is. One then obtains the constrained lagrangian,
which does not involve the full spurions but rather the con-
stants ξk and ηk. The power counting is then provided, in
addition to the expansion in momenta and gauge coupling
constants, by the powers of ξk, ηk, that is, by the powers
of ε.

We have already written down in (2.41) the leading-
order terms in the lagrangian, which are the terms of order
O (p2ε0

)
. Those terms do not involve spurions. We now

discuss the next terms: once the constraints are applied,
the terms that would appear at O (p2ε2

)
are found to

be constants or simple renormalizations of O (p2ε0
)

terms
since we have

XkX
†
k = ξ2k12×2, (2.44)
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and likewise for Yk. On the other hand, there are new terms
at O (p2ε4

)
. These yield the following terms in the standard

gauge used in Sect. 2.2.1:

〈DµΣk,k+1Xk+1Yk+1

× DµΣk+1,k+2Σ
†
k+1,k+2Y

†
k+1X

†
k+1Σ

†
k,k+1

〉∣∣∣
const.

(2.45)

= ξ2k+1η
2
k+1

〈
∇µΣk,k+1∇µΣk+1,k+2Σ

†
k+1,k+2Σ

†
k,k+1

〉
,

and 〈
GkµνYkΣk,k+1Xk+1G

µν
k+1X

†
k+1Σ

†
k,k+1Y

†
k

〉∣∣∣
const.

= ξ2k+1η
2
k

〈
GkµνΣk,k+1G

µν
k+1Σ

†
k,k+1

〉
. (2.46)

There are in fact other terms that would involve only prod-
ucts of spurions and Goldstone boson matrices without
derivatives. Such terms would be non-leading in ε, but of
order O (p0

)
. However, upon going to the above-mentioned

gauge, such terms yield constant numbers as a consequence
of the identity (2.44).

As we will see, the terms in (2.45) and (2.46) have im-
portant implications regarding the properties of the model:
they yield corrections to the WSRs. Regarding symmetries
and naturalness, we emphasize once again that the con-
strained lagrangian (2.41) is not invariant under the full
original symmetry Snatural,K , but only under the Sreduced,K

subgroup, since the transformations Lk and Rk have been
identified withGk for k = 1, . . . ,K. Thus, there is no reason
why the terms in the right-hand side of (2.45) and (2.46)
should not be included. Since they are invariant under
this reduced symmetry, they will in fact be required as
counter-terms if we consider loops. Our formalism involv-
ing spurions shows how these terms may be consistently
treated as being of higher order in an expansion around
the lagrangian (2.41).

2.3 Field redefinitions and unitary gauge

The model is the stage of multiple Higgs mechanisms: K
gauge fields get masses and K multiplets of Goldstone
bosons disappear from the spectrum. The mass matrix for
the gauge fields has a very specific structure, due to the
nearest-neighbor interactions, and this will have impor-
tant consequences later on. Counting the number of scalar
fields, one notices that there remains a physical Goldstone
multiplet in the spectrum. In order to describe the Higgs
mechanism, we will perform a gauge-independent change
of variables. We will refer to these field redefinitions by the
phrase “going to the unitary gauge”, due to the similarity
in the resulting lagrangian, but as a matter of fact, the
procedure does not involve gauge-fixing [26, 27]. We will
give the appropriate field redefinitions to be performed
in the full lagrangian but will then only write the result-
ing constrained lagrangian in order to avoid unnecessarily
complicated equations.

We first define the unitary matrix U describing the
Goldstone bosons remaining in the spectrum, the normal-
ization being fixed by the requirement that it be unitary.

This implies that the multiplicative factors ξk and ηk
3 drop

out from the definition

U = Σ0,1U1


K−1∏

j=1

VjΣj,j+1Uj+1


VKΣK,K+1,(2.47)

which merely contains the angular parts Uk and Vk of the
spurion fields as introduced in (2.28) and (2.29). We then
perform the change of variable from Σ0,1 to U . Next, we
define the vector fields Wµ

k by the following relation, for
k = 1, . . . ,K:

gkW
µ
k = i


Σ0,1U1

k−1∏
j=1

VjΣj,j+1Uj+1




×Dµ




k−1∏

j=1

U†
j+1Σ

†
j,j+1V

†
j


U†

1Σ
†
0,1




−iαkUD
µU†, (2.48)

and perform the change of variables from the Gµ
k fields to

the Wµ
k fields. From the transformation properties of Uk

and Vk, we know that the covariant derivatives appearing
in this equation are given by

DµUk = ∂µUk − iRkµUk + igkUkGkµ, (2.49)

DµVk = ∂µVk − igkGkµVk + iVkLkµ, (2.50)

which identically vanish when the constraints are imposed
on the spurions. The coefficients αk in (2.48) are defined by

αk = f2
π

k−1∑
j=0

1
f2

j

, for k = 1, . . . ,K, (2.51)

where we have introduced

1
f2

π

=
K∑

j=0

1
f2

j

. (2.52)

The transformation properties of the newly defined fields
are as follows:

U �−→ L0UR
†
K+1, (2.53)

Wkµ �−→ L0WkµL
†
0, for k = 1, . . . ,K, (2.54)

and when we then perform the change of variables accord-
ing to

{G1µ, . . . , GKµ, Σ0,1, . . . , ΣK,K+1}
−→ {W1µ, . . . ,WKµ, U,Σ1,2, . . . , ΣK,K+1} . (2.55)

We find that, as a consequence of the symmetries, the
lagrangian written in terms of these variables does not de-
pend on Σ1,2, . . . , ΣK,K+1: this is the Higgs mechanism. In

3 We remind the reader that ξk and ηk are at this stage
functions: we are writing down the fields redefinitions in a
general gauge and independently of the constraints.
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addition, the choice (2.51) for the coefficients αk eliminates
all mixing between the Goldstone bosons U and the vector
fields Wkµ.

It is in fact sufficient at this stage to work directly with
the constrained form of the lagrangian. With this in mind,
we give the constrained form of the field redefinitions in
order to display the field content in a more intuitive way

U |const. =
K∏

j=0

Σj,j+1, (2.56)

gkW
µ
k |const. = i


k−1∏

j=0

Σj,j+1


Dµ


k−1∏

j=0

Σj,j+1




†

− iαkUD
µU†∣∣

const.,

for k = 1, . . . ,K. (2.57)

Upon rewriting the lagrangian in terms of the newvariables,
one then recognizes fπ, defined in (2.52), as the Goldstone
boson decay constant.

In addition, the entry in the kth row and k′th column of
the mass-squared matrix M2 for theWµ

k fields are given by

[M2]
k,k′ =

1
4
δk,k′g2

k

(
f2

k−1 + f2
k

)
− 1

4
(δk,k′+1 + δk+1,k′) gkgk+1f

2
k , (2.58)

for k, k′ = 1, . . . ,K. The elements of this mass matrix
are of order O (p2ε0

)
since they contain two powers of

gauge couplings. This entails that the masses of the vector
bosons have to be considered small in some sense in our
expansion. In practice, this has to be understood as follows:
the corresponding fields really belong to the LEET only
if their masses are smaller than the scale at which the
low-energy perturbation expansion breaks down and at
which other resonances have to be taken into account. We
will not discuss the issue of estimating the value of this
scale. Suffices to say here that the information that can be
gleaned from the LEET containing the Goldstone modes
only [28–30], points to a value in the vicinity of 4πfπ,
but that there is a debate over these matters [31], related
to the possible restoration of tree unitarity from Kaluza–
Klein excitations of gauge fields in the extra-dimensional
case [32,33], or from the very resonances we are considering
here or in the dimensional deconstruction view. Coming
back to our main line of discussion, we notice that the
only non-zero entries in the mass-squared matrix (2.58)
are on the diagonal and just above or just below it. This
structure entails that the first powers of this matrix have
zero coefficient in the off-diagonal corners, that is[(M2)l−1

]
1,K

= 0, for l = 1, . . . ,K − 1. (2.59)

On the other hand, the first inverse power of this matrix
is such that it satisfies the relation

g1gKf
2
0 f

2
K

4

[(M2)−1
]
1,K

− f2
π = 0, (2.60)

as can be calculated explicitly by inference onK, forK ≥ 1.
We will make use of relations (2.59) and (2.60) later on in
Sect. 3.1. Note that in Sects. 4 and 5, we will be coupling
gauge fields at the ends of the chain, and also connecting
the two ends. This has no influence on the mass matrix
for the Wkµ fields, but only on the kinetic terms for these
fields. In order to bring the lagrangian to the canonical
form, further field redefinitions involving rescaling of fields
will then be required.

3 The left–right two-point correlator

The constrained moose shown in Fig. 2.2 represents a chain
of K gauge fields Gkµ interacting with K + 1 Goldstone
boson multiplets Σk,k+1, where K = 2 in the figure. As a
consequence of the dynamical Higgs mechanism, the lat-
ter disappear from the spectrum but for one combination
parametrized by U . This gives the mass matrix (2.58) to
the vectors.

The characteristic long-distance feature of the model is
its global chiral symmetry SU (2)L0

× SU (2)RK+1
, which

is spontaneously broken, generalizing the usual case of the
non-linear sigma model (K = 0). The Noether currents
generating this symmetry may be obtained by taking the
functional derivative with respect to the sources L0µ and
RK+1µ in (2.41). However, the lagrangian (2.41) is endowed
with additional interesting short-distance properties which
are reminiscent of QCD, despite the model bearing no
obvious resemblance to any QCD-like theory.

Indeed, in QCD, the spontaneously broken chiral
symmetry combines with the operator product expansion
(OPE) and the operator content of the theory to yield
the two Weinberg sum rules [15]: the two-point correlator
of left-handed and right-handed Noether currents trans-
forms according to the (3, 3) representation of the chiral
SU (2) × SU (2) group and there are no corresponding lo-
cal operators in the theory with mass-dimension strictly
lower than six [34]. Consequently, the left–right correla-
tor behaves smoothly at short distances, leading among
other things to the finite electroweak mass of the pseudo-
Goldstone bosons (pions) [35].

It has already been pointed out [16] that the lagrangian
(2.41) also leads to the two Weinberg sum rules, rendering
the theory smoother at high energies than naively expected:
we stress that this is in fact at the origin of the little Higgs
phenomenon. However, as is the case in QCD, this feature is
not a consequence of low-energy symmetries characteristic
of the lagrangian (2.41). What is crucial in addition is the
property of locality along the chain: the fact that only
nearest neighbors interact. This property is emphasized
when the lagrangian (2.41) is rewritten in the form

L(2,0)
∣∣∣
const.

= L0 (L0µ, Σ1,0, G1µ)

+ LK (GKµ, ΣK,K+1, RK+1µ)

+
K−1∑
k=1

Lk (Gkµ, Σk,k+1, Gk+1µ) . (3.1)



J. Hirn, J. Stern: The role of spurions in Higgs-less electroweak effective theories 455

We then see that, in order to connect the left and right
sources L0µ and RK+1µ, one has to perform at least K
contractions, pushing the left–right correlator to higher
orders. This property of the theory indeed does not follow
from the symmetry Sreduced,K of (2.41) alone: one needs
either to invoke dimensional deconstruction and locality in
thefifthdimension, or to use the higher symmetrySnatural,K
and the corresponding spurion formalism. Terms which are
not of the form (2.41) and which break the Weinberg sum
rules are indeed part of the theory, but are of higher order
in ε.

In this section, these statements are further clarified and
extended: we are going to show that, at order O (p2ε0

)
, the

theory actually containsKWeinberg sum rules generalizing
those known from QCD.

3.1 Generalized Weinberg sum rules

The claims made above concerning the left–right correlator
pertain to the two-point function of the Noether currents
corresponding to the symmetry under which the Goldstone
multiplet remaining in the spectrum transforms. Recalling
the transformation properties of U (2.53), we now focus
on the second derivative of the generating functional with
respect to the sources L0µ and RK+1µ: this study is per-
formed at lowest order and consequently at tree level. We
define the function ΠLR through the relation

4i
∫

dxeiq·x
〈
0
∣∣∣TJaµ

L0
(x)Jbν

RK+1
(0)
∣∣∣ 0〉

= −δab
(
ηµνq2 − qµqν

)
ΠLR

(−q2) . (3.2)

One may evaluate this by taking the second derivative of
the path integral with respect to the sources and then eval-
uating the tree-level diagrams in the basis of vector fields
which diagonalizes the mass matrix (2.58). We will however
follow another route, which displays in a more transparent
fashion the origin of the relations we are interested in, using
the Wµ

k fields.
We first extract the expressions for the currents in terms

of the Wkµ fields: this is easily done by first taking the
functional derivatives of the original expression for the
lagrangian (2.41), and then performing the change of vari-
ables implied by the definitions (2.57) and (2.56). Again,
we work with the constrained lagrangian in order to keep
the equations as simple as possible. We find the expected
field-current identities [13,36,37], with an additional term
involving the remaining Goldstone bosons

Jaµ
L0

=
δL2

δLa
0µ

∣∣∣∣∣
L0ρ=0,RK+1σ=0

= −g1f
2
0

4
W aµ

1 − i
f2

π

4
{
U∂µU†}a

, (3.3)

Jaµ
RK+1

=
δL2

δRa
K+1µ

∣∣∣∣∣
L0ρ=0,RK+1σ=0

(3.4)

= −gKf
2
K

4
{
U†Wµ

KU
}a − i

f2
π

4
{
U†∂µU

}a
.

The presence of the matrix U in the second line of (3.4)
follows from the lack of symmetry of our definitions (2.57)
relative to the center of the chain. This is a minor flaw,
and we stick to these definitions based on their simplicity.

Only the terms linear in fields in the above expressions
for the currents are relevant for the evaluation of the two-
point function at tree level. The only contributions in this
model come from Goldstone boson and massive resonance
exchange, and we find at this order

4i
∫

dxeiq·x
〈
0
∣∣∣TJaµ

L0
(x)Jbν

RK+1
(0)
∣∣∣ 0〉

= δab g1gKf
2
0 f

2
K

4

×
[(
ηµν1 − qµqν

(M2)−1
) (
q21 − M2)−1

]
1,K

+ δabf2
π

qµqν

q2
. (3.5)

Expanding this for large euclidean momenta Q2 = −q2 →
+∞ yields

ΠLR

(
Q2) = −g1gKf

2
0 f

2
K

4

∞∑
l=1

[(−M2
)l−1

]
1,K

Q2(l+1) . (3.6)

Note that the l = 0 term in this equation is absent for
K ≥ 1, due to the relation (2.60) (compare expressions (3.5)
and (3.6)). This is the first Weinberg sum rule, which is valid
here at tree level: the first moment in the expansion ofΠLR

at large Q2 is zero. In this model where the contributions
to the correlator come from infinitely narrow resonances,
the Weinberg sum rules are simply relations between the
masses of the resonances and the decay constants of the
Goldstone bosons and resonances as we will see in Sect. 3.2.
Note that the fact that relation (2.60) has to hold can
also be deduced from expression (3.5) and the transversity
of the two-point function, which is itself a consequence
of current conservation. From the relations (2.59), we see
that the terms with l = 1, . . . ,K − 1 in the infinite series
in the right-hand side of (3.6) are also zero. This gives us
additional Weinberg sum rules. The case l = 1 is recognized
as the second Weinberg sum rule. Thus, the case of a chain
with two intermediate sites (K = 2) reproduces exactly
two Weinberg sum rules.

In the general case, (3.6) shows that the two-point
function ΠLR decreases for large euclidean momenta as
1/Q2(K+1) and not as 1/Q2, where K is the number of
internal sites in the chain. This in turn implies that the
K first operators appearing as coefficients in the expan-
sion (3.6), which are order parameters of the chiral sym-
metry, are found to have a vanishing vacuum expectation
value in such models at this order. We have thus related
the smooth high-energy behavior of moose models to an
extension of a well-known property of QCD.
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3.2 Other aspects

In this section, we point out other relevant aspects of the
left–right correlator which require a closer inspection of
the algebra involved with the diagonalization of the mass
matrix. In fact, it turns out thatwe can learnmore about the
left–right correlator, even without explicitly diagonalizing
themassmatrix, but just using the orthogonality properties
of the transformation matrix to the diagonal basis.

As already mentioned, an alternative writing for ΠLR

uses the basis in which the mass matrix is diagonal: this
proceeds through the definition of the Aµ

n fields [16]

Aµ
n =

K∑
k=1

bknW
µ
k , for n = 1, . . . ,K, (3.7)

where the orthogonal matrix b is as yet unknown. We denote
by M2

n the mass-squared of the field Aµ
n. These masses as

well as the bkn coefficients may be calculated explicitly only
in particular case4. Taking the second functional derivative
with respect to the sources L0µ, RK+1ν of the generating
functional defined by the path integral over the lagrang-
ian (2.41), we get at tree level

ΠLR

(
Q2) = − f2

π

Q2 +
K∑

n=1

F 2
n

Q2 +M2
n

, (3.8)

where the coupling constant F 2
n of the massive vector field

Aµ
n is given by

F 2
n =

1
4
g1gKf

2
0 f

2
K

b1nb
K
n

M2
n

. (3.9)

Explicit calculation of the quantities

K∑
n=1

F 2
n − f2

π = 0, (3.10)

K∑
n=1

F 2
nM

2(l−1)
n = 0, for l = 2, . . . ,K, (3.11)

using (3.9) then gives an alternative derivation of the K
Weinberg sum rules of Sect. 3.1.

Depending on the sign of the constant F 2
n , one may

call the corresponding nth vector field a vector or an axial
resonance even though the names do not apply in the strict
sense since the chain is not necessarily symmetric under
reflection with respect to its center – “parity”5. In this
manner, one may determine the first non-zero moment in
the expansion (3.6)

ΠLR

(
Q2) (3.12)

4 We will work out an example explicitly in Sect. 3.3.
5 It is possible to show quite generally that the signs for the

F 2
n alternate, starting with a vector resonance (F 2

1 > 0). This
was already noticed in [16] for the parity invariant or symmetric
moose. The authors of [38] also point out that this is the case
in general whatever the model for resonances when one has
exactly as many resonances as Weinberg sum rules.

= −
(

K∏
i=1

g2
i

) K∏
j=0

f2
j

4


 1
Q2(K+1) + O

(
1

Q2(K+2)

)
.

Thus, in the limit of large Q2 we have Q2ΠLR

(
Q2
)
< 0,

as implied in the case of QCD by the inequality derived by
Witten [39]. This result once again confirms that of [38]
which considered resonances independently of a lagrangian
model, but assuming invariance under parity.

We briefly turn to the low-energy consequences of our
model: here again, we do not need to know the diagonal-
ization for the mass matrix explicitly, just its properties.

By integration of the massive resonances, one may
in principle derive the values of the LECs for the chi-
ral lagrangian corresponding to this model. Integration of
the resonances require that they be parametrically heavier
than the remaining particles. In our case, even though the
masses of the resonances are small parameters in the sense
of our expansion (they are counted as O (p2ε0

)
), the re-

maining particles are the massless Goldstone bosons, and
the procedure is thus meaningful. As a simple application,
one may determine the constant L10 defined by Gasser and
Leutwyler [4], by making use of the equations of motion
for the resonances [20], or directly through the following
relation [3]:

L10 = −1
4

∫ +∞

0
ds
(

1
π

Im (ΠLR (s)) + f2
πδ (s)

)

= −1
4

K∑
n=1

F 2
n

M2
n

. (3.13)

We find

L10 = −
K∑

k=1

αk (1 − αk)
g2

k

. (3.14)

Note that the constants αk appearing in this equation are
known explicitly from (2.51) in the generic case. If we
take the view that our moose model is to be used as a
model for the low-energy sector of a QCD-type theory,
then this constant L10 is a non-local order parameter of
chiral symmetry breaking: we observe that L10 < 0 in
this model. This fact will have repercussions later on in
Sect. 5 when we use these moose models as a basis for
the electroweak symmetry breaking: the constant L10 then
gives us the value of the S parameter [6] since we are
restricting ourselves to tree level. We have seen that the
sign of the parameter is fixed6, however, its magnitude can
bemade arbitrarily small if we set one of the decay constants
at the end of the chain to be much smaller than the others.
In practice, we would choose fK 
 fk for k = 0, . . . ,K−1
with the conventions to be adopted in Sects. 4 and 5. One
may also choose the gauge coupling constants to be large
enough in order to avoid a large value of L10 at tree level,
but the freedom in this respect is limited given the power
counting (2.9) for the gauge coupling constants gk.

6 Changing the sign would require a model where there are
fewer Weinberg sum rules than resonances, as can be seen
from [38].
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3.3 Particular cases

3.3.1 Case with all decay constants equal
and all gauge couplings equal

Up to this point the derivations have been general and the
results apply in all cases. Still, we are limited for practical
applications as soon as K is larger than a few units, since
we are then unable to diagonalize the mass matrix and
find the explicit values of the bkn coefficients. One may
want to derive further explicit results to get a feeling of
what happens. We will do this in the simplest possible case
while keepingK undetermined: we pick the particular case
where all decay constants are equal, and all gauge coupling
constants are equal

fk = f, for k = 0, . . . ,K, (3.15)

gk = g, for k = 1, . . . ,K. (3.16)

We then derive the following masses for the K resonances:

M2
n = g2f2 sin2

(
πn

2 (K + 1)

)
,

for n = 1, . . . ,K, (3.17)

and the following explicit expressions for the F 2
n :

F 2
n =

2
K + 1

(−1)n+1
f2 cos2

(
πn

2 (K + 1)

)
,

for n = 1, . . . ,K. (3.18)

With this formula, we can explicitly verify that we have
a tower of alternating vector and axial resonances7. The
expression for L10 in this particular case is found to be

L10 = − 1
6g2

K (K + 2)
K + 1

. (3.19)

3.3.2 Case with K = 1

We give a short summary of relevant results for this simple
case as a preparation for Sect. 5.2.3. The study of theK = 1
linear moose model is performed as in the general case
presented above: there is only one triplet of massive vector
fields W a

1µ, a = 1, 2, 3, with masses

M2
W1

= g2
1
f2
0 + f2

1

4
. (3.20)

The decay constant fπ of the remaining Goldstone bosons is
related to the original parameters in the lagrangian through
relation (2.52), which becomes

f2
π =

f2
0 f

2
1

f2
0 + f2

1
. (3.21)

For the K = 1 linear moose model, we have exactly one
Weinberg sum rule, and (3.8) is rewritten

ΠLR

(
Q2) = −f2

πM
2
W1

1
Q2
(
Q2 +M2

W1

) . (3.22)

7 This time, the names apply in the strict sense since we are
considering a symmetric moose.

3.4 Non-leading interactions
and corrections to the WSRs

We now briefly describe the effect of the non-leading terms
in ε mentioned in (2.45) and (2.46). These additional in-
teractions are of order O (p2ε4

)
, and thus only a limited

number of them may occur at a given order in the expan-
sion. For most of this paper we will not fix the relation
between the counting in powers of p and that in powers of
ε, since we want to be as general as possible.

In the dimensional deconstruction approach the terms
we are considering here are omitted on the basis that they
correspond to non-local interactions with respect to the
fifth (deconstructed) dimension. However, we want to con-
sider their effect since they are not forbidden by the sym-
metries of the problem once we have introduced the gauge
interactions, but only suppressed in our power counting
scheme. In any case, they will be produced by radiative cor-
rections.

We first consider the following lagrangian, where
O (p2ε4

)
terms of the type (2.45) have been included:

L′|const.

=
1
4

K∑
k=0

f2
k

〈
∇µΣk,k+1∇µΣ†

k,k+1

〉
− 1

2

K∑
k=1

〈GkµνG
µν
k 〉

+
1
2

K−1∑
k=0

ξ2k+1η
2
k+1fk,k+1

×
〈
∇µΣk,k+1∇µΣk+1,k+2Σ

†
k+1,k+2Σ

†
k,k+1

〉
. (3.23)

If we derive the expression for the two-point left–right func-
tion implied by this lagrangian at tree level and up to order
O (p2ε4

)
, we find that the last Weinberg sum rule obtains a

correction, (the l = K equation in (3.11) then includes an
O (p2(K−1)ε4

)
term in the right- hand side whereas individ-

ual terms in left-hand side are of order O(p2(K−1)ε0)). This
is expected from the naive observation that the effective
length of the chain is reduced: we indeed have interactions
involving two neighboring links. This may be rephrased
along the same lines as the reasoning following (3.1): the
number of gauge interactions required to have a non-zero
correlation between left and right currents is reduced. In-
deed, linear combinations of terms of the type〈

∇µΣk,k+1∇µΣ†
k,k+1

〉
(3.24)

and 〈
∇µΣk,k+1∇µΣk+1,k+2Σ

†
k+1,k+2Σ

†
k,k+1

〉
(3.25)

can be recast as combinations of〈
∇µΣk,k+1∇µΣ†

k,k+1

〉
(3.26)

and 〈
∇µ (Σk,k+1Σk+1,k+2) ∇µ

(
Σ†

k+1,k+2Σ
†
k,k+1

)〉
.(3.27)
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The point is that the right transformation of Σk,k+1 is
identified with the left transformation ofΣk+1,k+2, and the
corresponding interactions come in without an additional
power of the gauge coupling constant. This description
is reminiscent of the standard motivation for little Higgs
models [23].

Coming back to our discussion of the low-energy con-
stant L10 (3.14), we note that, provided the spurion term
in (3.23) represents a small correction, one expects

ξ2k+1η
2
k+1 |fk,k+1| 
 f2

j , (3.28)

which in turn implies that L10 remains negative.
If one now considers the additional terms involving

gauge field curvatures as shown in (2.46), then all Weinberg
sum rules but the first one are affected by the presence of
O (p2ε4

)
terms in the lagrangian: the particular sums of

O (p2(l−1)ε0
)

constants on the left-hand side of (3.11) are
evaluated to be of order O (p2(l−1)ε4

)
. This comes about

because the diagonalization of the kinetic terms for the
vector fields is modified. The first Weinberg sum rule on
the other hand, being related to the transversity of the two-
point left–right function, remains valid. In fact, it is possible
to destroy this sumrule aswell, providedwe introduce terms
similar to (2.45) involving the sources8〈

L0µνΣ0,1X1G
µν
1 X†

1Σ
†
0,1

〉
, (3.29)〈

GKµνYKΣK,K+1R
µν
K+1Σ

†
K,K+1Y

†
K

〉
. (3.30)

However, such terms only appear at order O (p3ε2
)
: for

them to appear at a lower order, they would need to be
divided by a gauge coupling constant, making them ill-
defined in the limit gk −→ 0. The same would then be
true of the Noether currents of the theory, even though the
contribution to the charge would be zero, being a surface
term. Therefore, the requirement that the off-shell Noether
currents of the theory be well-defined in this limit forbids
these terms at orderO (p2ε2

)
and implies that the first

Weinberg sum rule could at most be violated starting at
order O (p3ε2

)
.

In this section, we have seen that the WSRs get modified
by terms of higher powers in the expansion. To the extent
that the ξk and ηk constants are small parameters, these
modifications represent small corrections: the right-hand
side of (3.11) no more vanishes, but is suppressed by a
factor of order O (p0ε4

)
relative to individual terms in the

left-hand side. This is similar to the case of QCD, where
the second WSR is corrected due to non-zero quark masses,
which in χPT are also viewed as spurions.

3.5 Discussion

We have seen in Sect. 3.1 that imposing naturalness – in the
sense of the spurion formalism of Sect. 2 – on an open linear

8 This does not conflict with the transversity argument just
alluded to because in this case, there are additional local contri-
butions to the two-point left–right function which destroy the
link between the first Weinberg sum rule and the transversity
of this two-point function.

moose model withK internal sites impliesK Weinberg sum
rules at lowest order. At next order, these sum rules receive
corrections as discussed in Sect. 3.4. This means that in the
underlying model whose LEET we have been constructing,
the order parameters which give the coefficients in the
expansion (3.6) are naturally small. Now the particular
case where a given number of sum rules are valid has been
studied in [38], where the coupling constants and masses of
the vector and axial resonances are studied assuming parity.
What we display here is not the full theory either, but a
possible lagrangian for the low-energy sector, which means
that we are in a position to discuss other Green’s functions,
not only two-point ones. Our model is only one particular
instance realizing a given number of Weinberg sum rules
within some approximation, but it might nonetheless be
useful in conjunction with the large-Nc expansion of QCD
[40–42]. In view of such applications, one would only be
interested in the case K = 1 or K = 2.

Other cases with a longer moose would give us low-
energy descriptions for theories where the chiral symmetry
breaking pattern is different from that of QCD, suppress-
ing the order parameters appearing in the expansion (3.6).
Even though such models do not seem to be relevant to
QCD, they might be helpful in understanding the various
patterns of chiral symmetry breaking. In particular, one
would be interested in knowing in which respects the under-
lying theory would differ from QCD if such a comparison
is possible. However, such an endeavor is to be carried out
outside the domain of applicability of the effective theory
we have built.

4 Minimal model of EWSB

As already mentioned in Sect. 3, the case of the linear moose
withK = 0 corresponds to the non-linear sigma model and
can be viewed as the minimal symmetry-breaking sector
for the electroweak gauge theory: it only contains the three
Goldstone modes required to give masses to the W± and
Z0 vector bosons and no additional particles, in particular
no physical Higgs boson. Even though the corresponding
lowest-order lagrangian has been used to tackle the heavy-
Higgs limit of the SM in [9–11] and more systematically
in [12], we wish to emphasize that in general there need
not be an underlying scalar resonance to replace the Higgs
and that the approach is indeed much more general. In this
section, we focus on the simplest LEET for the electroweak
sector where the Higgs mechanism occurs dynamically, that
is to say, where there is no physical Higgs boson in the
spectrum as a remnant of a complex doublet9.

The point of view of the LEET framework is to construct
the effective lagrangianbased on the assumed symmetries of
the underlying theory – which we will call “techni-theory”
– with as little reference as possible to its details. The
denomination techni-theory stems from the known fact
that the effective lagrangian [6] for technicolor [43] and
other alternative symmetry-breaking sectors is built around

9 Or equivalently, as the radial component of a two-by-two
matrix Σ satisfying a reality condition Σc = Σ, see Sect. 2.2.1.
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the non-linear sigma model whereas the generalizations we
will be dealing with are based on extensions of the moose.
In fact, the authors of [44] already noticed that moose
models encompass many cases of dynamical electroweak
symmetry breaking.

A typical difficulty of technicolor theories (requiring
the introduction of extended technicolor) is the problem of
fermion mass generation [45] and of the presence of anoma-
lous couplings for these fermions [46,47]. This last point is
also true of BESS models [48,49]. We will see that, although
the LEET does not deal with the origin of the constraints
applied on the space of gauge configurations, it provides a
rationale for the classification of their effects through the
use of spurions, enabling us to discuss whether or not a
given term may appear in the lagrangian at leading order.
It also shows that any theory of dynamical EWSB a pri-
ori involves enough weak isospin breaking to provide mass
splittings within fermion doublets. In this section we dis-
cuss how the expansion in powers of spurions does address
some of the long-standing questions we have mentioned.

We now describe the leading-order properties of the sim-
plestmodel one can imagine forEWSBbasedonmooses: the
low-energy description then only includes the electroweak
gauge fields and the three Goldstone modes that are re-
quired to give masses to the W± and Z0 bosons. In other
words, the spectrum of the LEET does not include any
scalars. This is a well-known case, but the interest of our
formalism here mostly has to do with fermions: possible
anomalous couplings are suppressed by powers of ε. This
is a situation where those terms allowed by the reduced
symmetry of the theory are not allowed by the larger natu-
ral symmetry, and can therefore be consistently treated as
being of higher order, the order being given by the number
of spurions involved. Another prediction from our spurion
formalism is that mass splittings within the doublets au-
tomatically appear at the same order as the mean masses
in the doublets, whereas these splittings have always been
difficult to account for in traditional approaches to dy-
namical symmetry breaking. In addition, we note that the
operators giving a tree-level S parameter do not appear
at leading order. All these results are accounted for by
the same formalism, embodied by the spurion expansion,
which was originally introduced with a different aim: to
restore naturalness in a given limit.

This first model is based on the K = 0 linear moose
– which has an SU (2) × SU (2) symmetry – but adds two
dynamical SU(2) groups. Furthermore, we will introduce
a U (1)B−L group when we consider fermions. This means
that the natural symmetry for this model, before it is re-
duced by the constraints imposed on the spurions, is

Snatural = SU (2)4 × U (1)B−L . (4.1)

Applying constraints on the spurions will enable us to re-
duce this symmetry to

Sreduced = SU (2) × U (1)Y . (4.2)

The details of this reduction, as well as the physical conse-
quences are the subject of this section. As we will see later

Ỹ0 Σ0,1 X1

G0 G1L0 R1

Fig. 4.1. Coupling the electroweak gauge fields to the K = 0
moose via spurions

on in Sects. 5.1 and 5.2, many of the results will still hold
when we consider extensions of this minimal case. For this
reason, the current section, being central to the paper, is
fairly detailed.

4.1 Complex spurion and U (1)τ3

The model is obtained from the K = 0 linear moose by
coupling gauge fields to the only Goldstone multiplet as
shown inFig. 4.110. The twoSU (2)gauge fields transformas

G0µ �−→ G0G0µG
†
0 +

i
g0
G0∂µG

†
0, (4.3)

G1µ �−→ G1G1µG
†
1 +

i
g1
G1∂µG

†
1, (4.4)

and the corresponding transformations commute with the
chiral symmetry generated by L0 and R1.

The final selection of the SU (2) × U (1) gauge group
that becomes dynamical follows from the constraints ap-
plied on the spurions. It turns out that the two natural
possibilities allowed for the introduction of a two-by-two
matrix transforming under unitary symmetries – namely,
the case satisfying the reality condition used before, and
the generic case – are exactly what we need.

Here, the X1 spurion is restricted to satisfy the reality
condition Xc

1 = X1, as before, whereas the Ỹ0 spurion
is arbitrary in this respect. We require both spurions to
satisfy the constraint of covariant constancy, as we did
in Sect. 2.2.1. The outcome is then the following: we can
perform suitable SU (2)R1

and SU (2)L0
transformations

such that the spurions reduce to three real constants and
one phase,

X1|const.= ξ112×2, (4.5)

Ỹ0

∣∣∣
const.

= eiϕY

(
η01 0
0 η02

)
. (4.6)

The magnitude of these constants then can serve as expan-
sion parameters, and in addition, Ỹ0, being diagonal but
not proportional to the identity, allows for weak isospin
breaking. Such diagonal matrices have been used in the
literature11 in order to select a gauge group, but our point
is that – at least for the case of reducing SU (2) to U (1)
– these constant diagonal matrices can in fact be traced
back to spurions and that an expansion can be built based

10 The notations L0 and R1 are just names given to the groups,
and are in no way related to the chirality of fermions to be
introduced later.
11 See [23] among others.
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on that. Therefore, the possibility of building a systematic
expansion is guaranteed, since the appropriate terms for
the renormalization procedure can be constructed with the
help of the spurions [21, 50]. Moreover, the diagonal and
constant matrix descends from fields that are considered
as non-propagating at this level, pointing to a dynamical
origin for this subgroup selection.

In the same gauge where the spurions are diagonalized,
we get

R1µ|const.= g1G1µ, (4.7)

L1,2
0µ

∣∣∣
const.

= G1,2
0µ = 0, (4.8)

L3
0µ

∣∣
const.

= g0G
3
0µ. (4.9)

The R1µ connection and the gauge field g1G1µ are identi-
fied, whereas due to the complex nature of the Ỹ0 spurion,
only the U (1) subgroup of G0 can be gauged. In this case,
the identification between connections only concerns the
third component: the spurion has selected the U (1)τ3 sub-
group.

In order to arrive at this result, the spurions are intro-
duced as follows: X1 transforms as before,

X1 �−→ R1X1G
†
1, (4.10)

with G1 the SU (2) gauge transformation, and is restricted
to satisfy, as in (2.25),

Xc
1 = X1. (4.11)

In order to identify G0 with the U (1) subgroup of SU (2),
we will consider a spurion Ỹ0 which is a generic two-by-
two matrix-valued function – albeit with small entries –
transforming as

Ỹ0 �−→ G0Ỹ0L
†
0. (4.12)

Before we proceed to solve the constraints, we first write
all leading-order terms for the unconstrained lagrangian,
that is the terms of order O (p2ε0

)
. They are collected in

the following lagrangian:

L(2,0)
bosons =

f2
0

4

〈
DµΣ0,1D

µΣ†
0,1

〉
− 1

2
〈G1µνG

µν
1 〉

− 1
2

〈G0µνG
µν
0 〉 , (4.13)

where the covariant derivative operator Dµ involves both
sources L0µ and R1µ, but not the dynamical gauge fields
G0µ and G1µ

DµΣ0,1 = ∂µΣ0,1 − iL0µΣ0,1 + iΣ0,1R1µ. (4.14)

We now turn to the constraints: interactions with the
gauge fields are introduced by requiring the spurions to
satisfy the usual constraints of covariant constancy

DµX1 = 0, (4.15)

DµỸ0 = 0, (4.16)

where the covariant derivatives are defined in accordance
with (4.10) and (4.12).

The constraint is solved as usual for the X1 spurion,
using the decomposition

X1 = ξ1U1, (4.17)

and performing an SU (2)R1
transformation with

R1 = U†
1 , (4.18)

to arrive at the expected results (4.5) and then (4.7) when
the constraint is explicitly written. The SU (2) transfor-
mation G1 remains unconstrained.

As for the Ỹ0 spurion, we decompose the generic two-
by-two matrix according to

Ỹ0 = eiϕY G†
Y DY LY , (4.19)

whereϕY is real andGY , LY are elements of SU (2) andDY

is diagonal and real. Since the τ3 matrix commutes with
DY , the couple (GY , LY ) is unique only up to a diagonal
U (1) transformation

(GY , LY ) ∈ SU (2) × SU (2)
U (1)τ3,diagonal

. (4.20)

One can check that the number of independent real param-
eters in the right-hand side of (4.19) is indeed eight, as it
should be. Performing the following SU (2)G0

and SU (2)L0
transformations:

G0 = e−if τ3
2 GY , (4.21)

L0 = e−if τ3
2 LY , (4.22)

we get

Ỹ0 = eiϕY DY , (4.23)

independently of the gauge function f . Now, as a conse-
quence of (4.16) we have

Dµ

(
Ỹ0Ỹ

†
0

)
= 0, (4.24)

which is explicitly written in the gauge reached by per-
forming the transformations (4.21) and (4.22) as

∂µ

(
D2

Y

)− ig0
[
G0µ, D

2
Y

]
= 0. (4.25)

From this we deduce that

DY =
(
η01 0
0 η02

)
, (4.26)

must be a constant matrix, yielding (4.6). Its two entries
will be considered small, and of the same order as those of
the real spurions12

η01, η02 = O (ε) . (4.27)
12 This is not forced on us by the consistency of the expansion:
one could distinguish between this spurion and others, as they
play a different role.
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Furthermore, we also find that ϕY must be a constant. In
addition, one concludes in the generic case where η01 �= η02,
that

G1,2
0µ = 0, (4.28)

in this gauge. Turning to (4.16) itself, we get

g0G0µDY −DY L0µ = 0. (4.29)

With the help of (4.26) and (4.28), this last equation implies
the promised result reproduced in detail in (4.8) and (4.9).

Reaching the appropriate gauge this time involved aG0
transformation, but it turned out that an abelian subgroup
remained unconstrained: the gauge field is only restricted
to lie in the third direction due to the covariant constancy
conditions. Indeed, when the constraints are applied, the
only degree of freedom left of the six initial real gauge
functions in the SU (2)L0

×SU (2)G0
transformation is the

U (1) transformation f . We may thus use the notation

G3
0µ

∣∣
const.

= b0µ, (4.30)

since the connection is an abelian one, giving the corre-
sponding field-strength,

b0µν = ∂µb
0
ν − ∂νb

0
µ. (4.31)

The gauge transformation for b0µ is then

b0µ �−→ b0µ − 1
g0
∂µf, (4.32)

which is compatible with the constraints: we have a U (1)
symmetry left. One should not be surprised to find that
considering a generic spurion instead of a real one gives
more restrictions on the gauge field configurations. Indeed,
since we have a larger number of parameters, the covariant
constancy equation implies a larger number of relations.

Upon injecting the solutions to the constraints involving
the spurions, the lagrangian (4.13) becomes

L(2,0)
bosons

∣∣∣
const.

(4.33)

=
f2
0

4

〈
∇µΣ0,1∇µΣ†

0,1

〉
− 1

2
〈G1µνG

µν
1 〉 − 1

4
b0µνb

0µν ,

where the following definition applies:

∇µΣ0,1 = DµΣ0,1|const.

= ∂µΣ0,1 − ig0b0µ
τ3

2
Σ0,1 + ig1Σ0,1G1µ.(4.34)

The following terms, yielding a non-zero contribution to
the S parameter: 〈

L0µνΣ0,1R
µν
1 Σ†

0,1

〉
= O (p4ε0

)
, (4.35)〈

L0µνΣ0,1X1G
µν
1 X†

1Σ
†
0,1

〉
= O (p3ε2

)
, (4.36)

〈
G0µν Ỹ0Σ0,1R

µν
1 Σ†

0,1Ỹ
†
0

〉
= O (p3ε2

)
, (4.37)〈

G0µν Ỹ0Σ0,1X1G
µν
1 X†

1Σ
†
0,1Ỹ

†
0

〉
= O (p2ε4

)
, (4.38)

are absent at leading order: they are only corrections to
the original O (p2ε0

)
lagrangian (4.13).

Note that, whenever a term with Ỹ0 is possible, the same
term with Ỹ c

0 can also be written down, as Ỹ c
0 transforms

in the same manner as Ỹ0, but is independent from it for
a complex spurion.

In summary, we see that the complex spurion now al-
lows us to take into account weak isospin breaking. This
is obviously what they had been introduced for in the first
place: to restrict the symmetries of the model, and the
space of gauge configurations. However, they turn out to
be constant diagonal matrices in the gauge in which we
solve the constraints. The spurions are therefore a way of
introducing weak isospin breaking effects independently of
the coupling constant g013 in addition to the breaking due
to g0 �= 0 itself, a distinction already mentioned in [51]. In
addition, the spurion formalism provides a power count-
ing associated with these isospin breaking effects. This will
be of importance when we study fermions and the mass
splittings within the doublets.

4.2 Bosons

At this stage, we want to show that the bosonic sector
of this model is identical, at tree level, to that of the SM
with the Higgs particle removed. For this purpose, we use
field redefinitions as in Sect. 2.3: we stress again that even
though these redefinitions are suitable for the discussion of
the physical fields, the procedure does not involve gauge-
fixing. We once again give these redefinitions as they appear
after injection of the solution to the constraints applied on
the spurions. The W fields are defined through

Wµ =
i
g1
Σ0,1∇µΣ

†
0,1, (4.39)

in which case the lagrangian does not depend on the Gold-
stone bosons anymore: this is the consequence of the Higgs
mechanism. This is sufficient for theW± fields, but we still
have to work out the mixing of the neutral fields: the mass
matrix in the b0µ,W

3
µ basis is indeed

g2
1f2

0
4

(
0 0
0 1

)
, (4.40)

while the kinetic term is in the same basis

−1
4


1 +

(
g0
g1

)2
g0
g1

g0
g1

1


 . (4.41)

13 Though it will be argued in Sect. 5.2.3 that there might be
cases where the power counting for spurions and for coupling
constants have to be related.
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This is rewritten in canonical form using the definitions

W±
µ =

i
√

2
g1

〈
τ±Σ0,1∇µΣ

†
0,1

〉
, (4.42)

Aµ = s
i
g1

〈
τ3Σ0,1∇µΣ

†
0,1

〉
+

1
c
b0µ, (4.43)

Zµ = c
i
g1

〈
τ3Σ0,1∇µΣ

†
0,1

〉
, (4.44)

with

c =
1√

1 +
(

g0
g1

)2
, (4.45)

s =
√

1 − c2. (4.46)

The above definitions are useful in order to show that the
lagrangian does not involve the Goldstone fields anymore
when written with the appropriate variables. In order to
relate this to the usual diagonalization in the SM, one may
rewrite these field redefinitions in the particular case where
πa = 014 for a = 1, 2, 3 in

Σ0,1 = ei πaτa

f0 , (4.47)

to find

Aµ|πa=0 = cb0µ + sG3
1µ, (4.48)

Zµ|πa=0 = −sb0µ + cG3
1µ. (4.49)

One recognizes the SM tree-level formulas after performing
the replacement g0 �−→ g′ and g1 �−→ g. The value of the
electric charge is as expected

e =
g0g1√
g2
0 + g2

1

. (4.50)

The kinetic term for the Goldstone bosons yields the fol-
lowing mass term:

f2
0

4

〈
∇µΣ0,1∇µΣ†

0,1

〉
= M2

W

〈
W+

µ W
−
µ

〉
+

1
2
M2

Z 〈ZµZ
µ〉 ,

(4.51)

with the SM-like definitions

M2
W =

g2
1

4
f2
0 , (4.52)

M2
Z =

g2
1 + g2

0

4
f2
0 . (4.53)

14 To be more general, one may assume that this condition of
setting the Goldstone modes to zero is achieved by gauge fixing
as one would do to define the unitary gauge in the standard
manner for the SM.

4.3 Fermions and U (1)B−L

As already mentioned in (4.1), the natural symmetry of
this model involves a U (1)B−L group which is relevant
for fermions. This is the subject of this section: within
this minimal case, we want to describe the introduction of
fermions charged under U (1)B−L. We denote the U (1)B−L
connection by Bµ, transforming as

Bµ �−→ Bµ − ∂µβ
0. (4.54)

At this stage, Bµ is merely an external source (as are L0µ

and R1µ) and this is why the corresponding kinetic term
does not appear in the lagrangian. The appropriate power
counting is

Bµ = O (p1ε0
)
, (4.55)

Bµν = O (p2ε0
)
, (4.56)

as can be guessed from (2.11).
We will be considering elementary chiral fermion dou-

blets χL and χR, transforming with respect to the natural
symmetry group Snatural (4.1) as

χL �−→ G1e−i B−L
2 β0

χL, (4.57)

χR �−→ G0e−i B−L
2 β0

χR, (4.58)

where we have introduced the two four-component projec-
tions χL, χR of the Dirac spinor doublet χ which has eight
complex components. The definitions are as usual

χL,R =
1 ∓ γ5

2
χ. (4.59)

The transformation properties of these elementary fermi-
ons, except for the U (1) transformation, are schematized
in Fig. 4.2.

Another possibility would be to consider fermions trans-
forming under L0 and R1 instead of G0 and G1. Such fields
would then have to be interpreted as bound states result-
ing from the dynamics of the techni-theory. Hence, they
should be considered as composite as opposed to the ele-
mentary fermions we have just introduced above and which
transform under the weak gauge groups.

Note that, aswas noticed in [52,53] for small-momentum
power counting purposes, the following counting for chiral
fermions has to be imposed:

χL, χR = O
(
p1/2

)
. (4.60)

This can be deduced for instance by requiring that the
kinetic terms of these fermions appear at the same order

χR χL

Ỹ0 Σ0,1 X1

G0 G1L0 R1

Fig. 4.2. Introduction of fermions in the model of Sect. 4.1
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as the kinetic terms for the bosons, thereby allowing them
to be part of the effective theory as dynamical fields at the
same level, or alternatively by inspection of the normaliza-
tion of states. Both these conditions imply the result (4.60),
with the proviso that we consider massless or light fermions,
again in connection with naturalness.

We have introduced the additional U (1)B−L symmetry,
but it turns out that we will be interested in the case
where the corresponding gauge fields is identified with the
one associated with the U (1)τ3 of Sect. 4.1. As should be
clear from what we have done up to now, we are going
to impose this identification through our usual constraint
of covariant constancy on a spurion. For this purpose, we
introduce another non-propagating field: a complex doublet
transforming as15

φ �−→ G0ei β0

2 φ. (4.61)

Our choice for the U (1) charge of this doublet is done in or-
der to have the proper normalization for the B−L charges
once the constraints are solved and the ensuing identifica-
tion between U (1) connections is performed. The condition
of covariant constancy to be imposed reads explicitly

Dµφ = ∂µφ− i
(
g0G0µ − Bµ

2

)
φ = 0. (4.62)

We next assume that the choice of gauge described in
Sect. 4.1 has already been performed and the constraint
on Ỹ0 has already been solved for. The result is then that
we obtain (4.6), (4.8) and (4.9). In order to diagonalize Ỹ0,
we have used a G0 transformation as specified in (4.21).
Now, solving (4.62) with our usual method of choosing the
simplest gauge appears impossible: it seems a priori that
the problem is overdetermined. Thanks to the constraint
themselves, which restrict the gauge configurations to be-
long to the U (1) subgroup of SU (2), it is in fact possible
to find a solution, resulting in

φ|const.=
(
ζ

0

)
, (4.63)

and

Bµ|const.= g0G
3
0µ = g0b

0
µ, (4.64)

where ζ is a real constant to which we apply for the sake
of simplicity the same power counting as to the other spu-
rions: it is counted as O (ε)16. We will also see that (4.28)
still holds.

To show this, we use the fact that a complex doublet
can always be decomposed in terms of a real function ζ
and an SU (2) matrix UZ as

φ = UZ

(
ζ

0

)
. (4.65)

15 This complex doublet is not to be confused with the Higgs
doublet of the SM, which would transform under G1. As we
shall also see in Sect. 4.5, it does not have the same impact on
fermion masses.
16 The same remark as in footnote 12 applies.

We then perform the following SU (2)G0
×U (1)B−L trans-

formation:

G0 = e−if ′ τ3
2 U†

Z , (4.66)

β0 = f ′, (4.67)

with f ′ a gauge function to be solved for later. When this
transformation is applied,φ reduces to the real function ζ in
its upper component, and zero in the lower component. We
then write out explicitly the components of the constraint
equation (4.62) to find that ζ is indeed a constant, which
is the result (4.63). We also get in this gauge

G′1,2
0µ = 0, (4.68)

g0G
′3
0µ = Bµ. (4.69)

Now we see that this gauge is related to the one used in
Sect. 4.1 by

G′
0µ = V G0µV

† +
i
g0
V ∂µV

†, (4.70)

where the gauge transformation V is given by

V = e−if ′ τ3
2 U†

ZG
†
Y eif τ3

2 . (4.71)

However, since both G′
0µ and G0µ point in the third direc-

tion, the transformation V only involves the exponential of
a function times τ3: it is a U (1) transformation. Therefore,
by appropriately choosing f ′ depending on the function f ,
we can set this function to be zero, that is

V = 1. (4.72)

We are then left with only one free gauge function f .
In summary, due to the constraints themselves, we

have been able to diagonalize both spurions in the same
gauge, giving

G′
0µ = G0µ. (4.73)

Injecting this into (4.69), we get the desired result (4.64).
To summarize, we make a list of useful results from

this section and Sect. 4.1: we have shown that there ex-
ists a gauge in which the spurions reduce to the following
constants, assumed for simplicity to be O (ε):

X1|const.= ξ112×2, (4.74)

Ỹ0

∣∣∣
const.

= eiϕY

(
η01 0
0 η02

)
, (4.75)

φ|const.=
(
ζ

0

)
. (4.76)

This result is of paramount importance since this is the
standard gauge we will be using each time we want to inject
the solution to the constraints in order to see the physical
content of the terms. This gauge is reached by fixing nine
gauge functions among the thirteen available for generic
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SU (2)G0
× SU (2)L0

× SU (2)R1
× SU (2)G1

× U (1)B−L

transformations. We are then left with an SU (2) × U (1)Y
invariance. The U (1)Y degree of freedom is associated with
the gauge function f . In this gauge, the following relations
between connections hold:

Ra
1µ

∣∣
const.

= g1G
a
1µ, for a = 1, 2, 3, (4.77)

L1,2
0µ

∣∣∣
const.

= G1,2
0µ = 0, (4.78)

L3
0µ

∣∣
const.

= g0G
3
0µ

∣∣
const.

= Bµ

∣∣∣
const.

= g0b
0
µ, (4.79)

where Ga
1µ and b0µ are the only gauge fields which are non-

zero. b0µ transforms as a U (1) connection

b0µ �−→ b0µ − 1
g0
∂µf. (4.80)

Although for notational convenience we count each power
of spurion amplitudes ξ1, η01, η02 and ζ as O (ε), it should
be stressed once more that the final counting of various
spurions canbe consistently determined only taking into ac-
count loops in a full analysis of various symmetry-breaking
effects. This is however beyond the scope of this paper.

4.4 Fermion couplings

With the notation of the preceding section, we find the fol-
lowing possible terms involving fermions at order O (p2ε0

)
:

L(2,0)
fermions = iχLγ

µDµχL + iχRγ
µDµχR

+ four-fermion interactions. (4.81)

We want to show that the couplings with vector fields at
lowest order are automatically identical to those in the SM.
We start from

DµχL = ∂µχL − i
(
g1G1µ +

B − L

2
Bµ

)
χL, (4.82)

DµχR = ∂µχR − i
(
g0G0µ +

B − L

2
Bµ

)
χR, (4.83)

which become upon application of the constraints and in
the standard gauge

∇µχL = DµχL|const.

= ∂µχL − i
(
g1G1µ + g0

B − L

2
b0µ

)
χL, (4.84)

∇µχR = DµχR|const.

= ∂µχR − ig0b0µ

(
τ3

2
+
B − L

2

)
χR. (4.85)

Using unitary rotations involving the SU (2) matrix-valued
field U1 as defined in (4.17), we next perform the following
fields redefinitions for fermions:

ψL = Σ0,1U1χL, (4.86)

ψR = χR, (4.87)

which are inoffensive from the point of view of anomalies
as long as we have three quarks for one lepton, since the
trace ofB−L over fermions is then equal to zero. Denoting

ψ = ψL + ψR, (4.88)

and using the field redefinitions we have introduced for
vector fields in (4.42-4.44), we find that (4.81) becomes
upon application of the constraints in the standard gauge

L(2,0)
fermions

∣∣∣
const.

= iψγµ∂µψ + eψγµQψAµ

+
e

cs
ψγµ

{
τ3

2
(1 − γ5)

2
− s2Q

}
ψZµ

+
1√
2
e

s
ψγµτ∓ (1 − γ5)

2
ψW±

µ , (4.89)

with

Q =
τ3

2
+
B − L

2
. (4.90)

This is the desired SM-like result: anomalous couplings
would come from terms such as

iχLγ
µX†

1Σ
†
0,1 (DµΣ0,1)X1χL = O (p2ε2

)
, (4.91)

iχRγ
µỸ0Σ0,1

(
DµΣ

†
0,1

)
Ỹ †

0 χR = O (p2ε2
)
, (4.92)

and are therefore of higher order in the spurion expansion.
This is automatically obtained in our spurion formalism
without any additional assumptions and it represents a new
result compared to the literature [46–49,51]. It should be
stressed that such terms would result in a violation of the
universality of left-handed couplings, and would also allow
couplings of the right-handed fermions to the W±. It is
therefore very satisfactory to find that they are automati-
cally suppressed as a by-product of our spurion formalism,
which we have introduced in relation with other consid-
erations pertaining to naturalness, and which in addition
allows us to describe the breaking of weak isospin.

Anomalous magnetic moment terms will also be sup-
pressed in the spurion expansion, and are suppressed by
an unknown dimensionful scale, as are the four-fermion in-
teractions.

Since the lowest-order couplings of the fermions are
as in the SM and since we have recovered the same tree-
level relations as in the SM for the bosonic sector – in
particular, one may notice that the custodial symmetry [54]
is implemented by the SU(2)L0 group – it should then be
no surprise that an explicit calculation gives zero tree-level
values for the S, T, U parameters [8] in this model.

4.5 Fermion masses

In order to construct fermion mass terms invariant under
the whole symmetry Snatural, and given the transformation
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properties of the fermions (4.57) and (4.58), spurions are
necessary. In this section, we concentrate on the lowest-
order terms O (p1ε2

)
, i.e. quadratic forms without deriva-

tives, with two spurion insertions. One may conceive a joint
power counting for momenta and spurions such that the
kinetic term O (p2ε0

)
and the mass term O (p1ε2

)
would

appear at the same order. We first consider quarks, and
use i, j as generation indices. The most general O (p1ε2

)
mass term reads

L(1,2)
quarks (4.93)

= −m1ijχLiX
†
1Σ

†
0,1Ỹ

†
0 χRj −m∗

1ijχRj Ỹ0Σ0,1X1χLi

− m2ijχLiX
†
1Σ

†
0,1Ỹ

c†
0 χRj −m∗

2ijχRj Ỹ
c
0Σ0,1X1χLi.

Using the notations

mu
ij = ξ1

(
η01e−iϕY m1ij + η02eiϕY m2ij

)
, (4.94)

md
ij = ξ1

(
η02e−iϕY m1ij + η01eiϕY m2ij

)
, (4.95)

ψi −→
(
ui

di

)
, (4.96)

(4.93) becomes, when the constraints are solved

L(1,2)
quarks

∣∣∣
const.

= −mu
ijuLiuRj −mu∗

ij uRjuLi

− md
ijdLidRj −md∗

ij dRjdLi. (4.97)

In the generic power counting, both the masses and the
mass splittings within doublets will be counted as O (p0ε2

)
.

From the notation in (4.97) we see that the masses and
splittings for different doublets are independent of each
other, allowing us to account for the masses of the fermi-
ons in a satisfactory way without the presence of physical
scalars in the spectrum. We remark that the freedom is the
same as in the SM, concerning both the magnitude and
phases of the coefficients: the additional parameters ξ1, η01
and η02 set the scale of the masses, whereas the phase ϕY

can be absorbed in a redefinition of the matrices m1 and
m2. Despite the fact that here the origin of the fermion
masses is not the standard Higgs mechanism, the pattern
of CKM mixing and CP violation is identical to the SM:
no predictivity is lost or gained at this level.

In the lepton sector, we can also write down terms anal-
ogous to those of (4.93). In addition, one can construct new
operators involving the leptonswhich are completely invari-
ant under Snatural. These are the first terms we encounter
involving the spurion φ:

NRi = φ†χRi = O
(
p1/2ε1

)
, (4.98)

NLi = φ†Ỹ0Σ0,1X1χLi = O
(
p1/2ε3

)
, (4.99)

and a similar term with the replacement Ỹ0 �−→ Ỹ c
0 . We

have given the simplest power counting for these operators,
assuming a common power counting for all the spurions.
However, the fact that the spurion description is common

to all the symmetry-reducing mechanisms does not imply
that the spurions must have the same power counting. In
particular, one may entertain the view that the φ spurion
should be counted at a different level. In the remainder of
this section, we will therefore give the powers of ζ, ξ1 and
η0 (where we have generically used η0 for both η01 and η02)
which appear in the operators, instead of the powers of ε.

With the NL,R operators, we can write down Lorentz
invariant terms violating lepton number. We recall that,
up to now, we have not encountered any interactions of the
right-handed neutrinos. To elucidate the physical content
of the new terms involvingNR andNL, we use the following
notation for the lepton sector:

ψi −→
(
νi

ei

)
. (4.100)

Using the definitions (4.86) and (4.87) for the fermion
fields in the unitary gauge and solving the constraints then
leads to

NRi|const.= ζ

(
νRi

0

)
, (4.101)

NLi|const.= eiϕY ζξ1η01

(
νLi

0

)
. (4.102)

These operators project out the neutrino components of
the doublet, up to multiplications by constant factors.
From (4.101) and (4.102), we deduce that the right-handed
Majorana masses will be proportional to ζ2, while the left-
handed Majorana masses will contain factors of ζ2ξ21η

2
0 .

We can also construct additional Dirac mass terms of or-
der ζ2ξ1η0 for neutrinos, whereas the ones analogous to
the mass matrix for the quarks (4.93) are proportional to
ξ1η0. All the new terms are absent in the case of quarks
due to non-invariance with respect to U (1)B−L: only for
leptons do they respect the full Snatural symmetry, opening
the possibility for lepton number violation driven by the
neutrino sector. This would in fact be a place to evaluate
the orders of magnitude of the various spurions when con-
fronted to data on lepton flavor violation; however, we will
leave this question open at this stage.

In addition to this, we have learned how the φ spurion
is related to naturalness: it introduces lepton number vio-
lation. This is indeed the only physical consequence of the
φ spurion at this level.

To summarize, we have seen that the minimal model
for EWSB, which involves the dynamical Higgs mecha-
nism, and no physical Higgs boson, fits quite nicely in our
framework: the U (1)Y gauge group is introduced naturally
within the spurion formalism, which gives us a possibility
to properly account for the masses of the fermions while
suppressing non-standard terms. With this firmer basis for
the neglect of unwanted terms, we may then embark on a
more thorough study of the effective theory expansion for
this minimal case, along the lines of [53]. This is however
outside the scope of this paper.
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χR χL

Ỹ0

Σ0,1 X1 Y1 Σ1,2 X2

G0 G2L0 R1 G1 L1 R2

Fig. 4.3. A model for EWSB with one internal site

5 Two examples of non-minimal
Higgs-less models

The fact that all particles that are considered light must be
included in our effective lagrangian implies that there is no
single effective lagrangian once one allows for new particles
not too far above the weak scale: we will give examples of
such cases in this section. In fact we will first study in
this section a case where there are vector resonances in the
low-energy spectrum in addition to the minimal particle
content, and then one where there is a triplet of PGBs:
barring supersymmetry, the only known way to protect
physical scalar masses from radiative corrections is for them
to be PGBs. This last scenario still deserves the name of
Higgs-less model, as these scalars are not related to the
SM Higgs.

5.1 Case with W ′ and Z′

The previous section was a showcase to introduce our
method of using linear mooses equipped with spurions as
toy models of EWSB. We now want to give some insight
into the next simplest case which involves an additional
gauge multiplet (K = 1). This model will then include ex-
cited vectorsW ′ and Z ′. The idea is to discuss the simplest
possibility that gives corrections to the SM-like relations
we have seen in Sect. 4: corrections appear in this case at
tree level due to these excited vectors, which are assumed
to be heavier than theW± and Z, but still lighter than the
next resonances. The generalization to models with more
and more excited vectors is always possible, and may be
motivated by considerations of tree-level unitarity [32,33],
which we will not get into here.

Our model is depicted in Fig. 4.3, with the elementary
fermions already included. The transformation properties
of the fermion doublets are thus the following:

χL �−→ G2e−i B−L
2 β0

χL, (5.1)

χR �−→ G0e−i B−L
2 β0

χR, (5.2)

and the definitions are as before for all the fields.
We will adopt the view that the internal gauge group,

which has a particular status since it describes the low-
energy sector of the techni-theory, can be assumed to have
a stronger gauge coupling than the two weak gauge fields
without incoherences

g0
g1
,
g2
g1


 1. (5.3)

We will then give the final results as an expansion in 1/g1
so that it is clear how we recover the limit of Sect. 4 when

g1 goes to infinity, as one would expect. Our model is akin
to that of [48, 55], but without reference to the “hidden
symmetry” assumption [56]. Furthermore, our spurion for-
malism enables us to describe the fermion sector (masses
and couplings to vector bosons) without additional as-
sumptions: indeed, we have seen in Sect. 4 that anomalous
couplings are suppressed by powers of ε, and this result
will still hold here.

We focus for simplification on the case where f1 = f0 =
f at tree level, in order to avoid unreadable formulas.

The natural symmetry of this model is

Snatural = SU (2)7 × U (1)B−L , (5.4)

which gets reduced via the constraints on the spurions, to

Sreduced = SU (2)2 × U (1)Y . (5.5)

5.1.1 Physical fields

From the above definitions, we find that the O (p2ε0
)

lagrangian is

L(2,0) =
f2

4

〈
DµΣ0,1D

µΣ†
0,1

〉
+
f2

4

〈
DµΣ1,2D

µΣ†
1,2

〉

− 1
2

〈G0µνG
µν
0 〉 − 1

2
〈G1µνG

µν
1 〉 − 1

2
〈G2µνG

µν
2 〉

+ iχRγ
µDµχL + iχRγ

µDµχR

+ four-fermion interactions. (5.6)

The solution to the constraints

DµX1 = 0, (5.7)

DµY1 = 0, (5.8)

is as in Sect. 2.2.1. Solving the constraints

DµX2 = 0, (5.9)

DµỸ0 = 0, (5.10)

Dµφ = 0, (5.11)

where

φ �−→ G0ei β0

2 φ, (5.12)

as before, one proceeds in analogy with Sects. 4.1 and 4.3.
The lowest-order mass term for quarks is of order O (p1ε4

)
L(1,4)

quarks = −m1ijχLiX
†
2Σ

†
1,2Y

†
1 X

†
1Σ

†
0,1Ỹ

†
0 χRj
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− m∗
1ijχRj Ỹ0Σ0,1X1Y1Σ1,2X2χLi

− m2ijχLiX
†
2Σ

†
1,2Y

†
1 X

†
1Σ

†
0,1Ỹ

c†
0 χRj

− m∗
2ijχRj Ỹ

c
0Σ0,1X1Y1Σ1,2X2χLi. (5.13)

The masses and splittings are thus of order O (p0ε4
)
: in

contrast with the result O (p0ε2
)

we have found in the
minimal case, cf. Sect. 4.5. The power counting for spurions
actually depends on the total number of spurions involved
along the chain, i.e. on the length K of the moose. This
has to be taken into account when comparing the power
counting between ε and p on physical grounds.

Performing the proper field redefinitions, we find that
this model yields W± and Z0 vector bosons as well as a
massless photon. There are in addition W ′± and Z ′ reso-
nances, which also couple directly to fermions. We will re-
sort to the formalism of oblique parameters in order to make
contact with the literature; however, we will use the defi-
nitions of these parameters in terms of observables [57,58]
as opposed to two-point functions. The field redefinitions
are as follows – once again, as they appear after solving
the constraints on the spurions:

g1W1µ = iΣ0,1∇µΣ
†
0,1, (5.14)

g2W2µ = iΣ0,1Σ1,2∇µ

(
Σ†

1,2Σ
†
0,1

)
. (5.15)

We then use an orthogonal transformation for the charged
fields (

W±
µ

W ′±
µ

)
=
(

cos γ − sin γ
sin γ cos γ

)(
W±

1µ

W±
2µ

)
, (5.16)

where cos γ is found to be

cos γ =
1√

1 +

(
2g2

1−g2
2+

√
4g4

1+g4
2

)2

4g1g2

. (5.17)

The matrixN for the neutral fields involves rescalings, and
is defined as 

 b0µ
W2µ

W1µ


 = N


Aµ

Zµ

Z ′
µ


 . (5.18)

The entries of this matrix reappear constantly in calcula-
tions, but their full expressions are rather lengthy, so we
will not write out the Nij ’s explicitly in the equations, but
rather perform the expansion in 1/g1. One finds the fol-
lowing tree-level expressions for the masses of the W± and
Z0:

M2
W =

g2
2

8
f2 − 1

32
g4
2

g2
1
f2 + O

(
1
g4
1

)
, (5.19)

M2
Z =

g2
2 + g2

0

8
f2

− 1
32

(
g2
0 − g2

2
)2

g2
1

f2 + O
(

1
g4
1

)
, (5.20)

and for the masses of the W ′± and Z ′

M2
W ′ =

g2
1

2
f2 +

g2
2

8
f2 + O

(
1
g2
1

)
, (5.21)

M2
Z′ =

g2
1

2
f2 +

g2
2 + g2

0

8
f2 + O

(
1
g2
1

)
. (5.22)

5.1.2 Remarks

The electric charge is given by

e =
g0g2√
g2
0 + g2

2

− 1
2g2

1

g3
0g

3
2

(g2
2 + g2

0)
3
2

+ O
(

1
g4
1

)
, (5.23)

so that in this case, we are not in a position to make
contact with the SM by a simple replacement as in Sect. 4,
but we need to study observables and check whether they
obey the same relations as in the SM, or whether there
are corrections relative to the SM at leading order. Details
about thedetermination of the obliqueparameters are given
in Appendix A for illustration purposes. We only discuss
here the S parameter at tree level. We get

αS =
1
g2
1

g2
0g

2
2

g2
2 + g2

0
+ O

(
1
g4
1

)
. (5.24)

The sign and magnitude of this contribution is as expected
from the result (3.14), using the relation [6] which gives the
value of S in the electroweak model once the value ofL10 for
the corresponding non-linear sigma model (obtained from
the moose after integration of the resonances) is known

S = −16πL10. (5.25)

Of course, the S parameter would have been further sup-
pressed had we chosen f1 
 f0 as already mentioned in
Sect. 3.2. Indeed, the suppression by powers of ratios of
coupling constants cannot be taken too far as it implies
that g1 is not small, and is thus threatening the consis-
tency of the loop expansion as well as casting doubt on
the meaning of the power counting for g1. We emphasize
that this is a weak point of the formulation even though, in
practice, we shall not be dealing with the loop expansion
for this model.

We further point out that the decoupling of theW ′ and
Z ′ for tree-level relations is achieved in the limit g1 −→
+∞, as can be deduced from the formulas of Appendix A,
in which case one obtains a shorter moose – that of Sect. 4.
One may wish to consider the general case with additional
resonances, but we will not pursue this further in that
direction as far as this paper is concerned.

As a conclusion to this section, we stress the fact that
we have limited ourselves to the tree level in the effective
theory formalism. This formalism is to be carried out as a
loop expansion involving renormalization of counter-terms
of higher and higher orders: there are thus more and more
constants to determine each time we ask for more precision.
As long as there is no way to estimate the values of these
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Ỹ0

Σ0,1

X̃0

X1 Y1 Σ1,2

G0

L0 R2R1 G1 L1

Fig. 5.1. The simplest moose model for EWSB with scalars in the spectrum

constants at a given scale17, other than experiment, it is
difficult to say whether or not there really is a conflict with
experiment. Here we have included the first excited vector
states in our effective lagrangian, which in practice means
that we assume their effects to be larger than those of loops.
We believe that this is a possibility, but the reader should be
aware of the fact that limiting oneself to tree diagrams while
at the same time considering the limit (5.3) is not obviously
safe. Note that the considerations following (2.58) should
be borne in mind as well. Given these limitations, we do
not push the phenomenological discussion of this model
further, but instead, turn to another possibility: that of
having PGBs as the first additional states in the theory.

5.2 Case with a triplet of PGBs

We now describe the case where the linear moose is ex-
tended by connecting the two ends via spurions and a gauge
group. Since we are interested in applications to the elec-
troweak sector, this additional gauge group should only
be the U (1) subgroup of SU (2), which is selected by the
spurions. We will consider the simplest case, that with one
internal site (K = 1) as shown in Fig. 5.1. The effective the-
ory for this model is constructed along our standard line of
reasoning, and we will find that the spectrum consists in the
W±, Z0, the photon, and a triplet of pseudo-scalars. Note
that, as was done in Sect. 5.1, one may consider a longer
chain with additional gauge groups with larger gauge cou-
plings, yielding W ′ and Z ′ resonances: the discussion of
the S, T, U parameters would then be similar.

The natural symmetry of the model is in this case

Snatural = SU (2)6 × U (1)B−L , (5.26)

while the reduced symmetry, obtained after applying the
constraints, is

Sreduced = SU (2) × U (1)Y . (5.27)

5.2.1 Complex spurions in a closed moose

We introduce the spurions Ỹ0, X̃0, φ with the following
transformation properties:

Ỹ0 �−→ G0Ỹ0L
†
0, (5.28)

17 Some authors have recently revived the idea that there may
be a way to perform calculations for models of EWSB with
strong dynamics, using the correspondence between this case
and the five-dimensional models with warped geometry where
the gauge symmetries get broken on branes [59,60].

φ �−→ G0ei β0

2 φ, (5.29)

X̃0 �−→ R2X̃0G
†
0, (5.30)

where Ỹ0, X̃0 are two-by-two complex matrices and φ is a
complex doublet. At this stage, the complex doubletφ is not
necessary as we have not yet introduced fermions. Still, we
want to show how the constraints on these three spurions
are solved at the same time: we have seen in Sect. 4.3 how
the constraints

DµỸ0 = 0, (5.31)

Dµφ = 0, (5.32)

could be solved simultaneously, resulting in

G1,2
0µ

∣∣∣
const.

= 0, (5.33)

L1,2
0µ

∣∣∣
const.

= 0, (5.34)

L3
0µ

∣∣
const.

= Bµ|const.= g0G
3
0µ

∣∣
const.

= g0b
0
µ,(5.35)

after an appropriate choice of gauge. Solving for both spu-
rion constraints (5.31) and (5.32) using the same G0 trans-
formation was possible thanks to the restrictions implied
by the constraints themselves: a U (1) transformation was
all that was required to connect the two configurations, and
we had enough freedom to choose the f ′ gauge function
for our purposes. We now want to solve in addition the
constraint on the X̃0 spurion.

Let us recall that both spurions Ỹ0, X̃0 are assumed to
be generic two-by-two matrices, except that their entries
must be functions with small modulus, to be counted as
order ε. Using the same procedure as in Sect. 4.3 we shall
see that we can solve the constraint to be applied on X̃0:

DµX̃0 = 0 (5.36)

in the same gauge. The result will turn out to be the
expected one: the spurion is constant and can be written

X̃0

∣∣∣
const.

= eiϕX

(
ξ01 0
0 ξ02

)
, (5.37)

and the connections are identified, giving us the following:

R1,2
2µ

∣∣∣
const.

= 0, (5.38)

R3
2µ

∣∣
const.

= g0G
3
0µ, (5.39)

while we also recover (5.33).
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In order to show this, we assume that the constraints
(5.31) and (5.32) on Ỹ0 and φ have been solved as in
Sects. 4.1 and 4.3, respectively. This involves the gauge
function f ′ of (4.66) and (4.67), which is now fixed with
respect to f . We use the following decomposition for X̃0:

X̃0 = eiϕXR†
XDXGX , (5.40)

where ϕX is real,RX , GX are elements of SU (2) andDX is
diagonal and real. The same remark concerning the number
of parameters as made after (4.19) applies. We then perform
the following SU (2)G0

and SU (2)R2
transformations:

G0 = e−if ′′ τ3
2 GX , (5.41)

R2 = e−if ′′ τ3
2 RX . (5.42)

We have again introduced a gauge function f ′′, to be solved
for later. In this gauge, we have

X̃0 = eiϕXDX , (5.43)

independently of our choice for f ′′, due to the remark
following (4.19). We can then derive, along the same lines
as for Ỹ0, that DX

DX =
(
ξ01 0
0 ξ02

)
, (5.44)

is a constant matrix. As usual, we impose the following
power counting for the two constants appearing in this ma-
trix:

ξ01, ξ02 = O (ε) . (5.45)

In the gauge specified by (5.41) and (5.42), we find, writing
the covariant constancy equation component by component

G′′1,2
0µ = 0. (5.46)

However, G′′
0µ is related via

G′′
0µ = WG0µW

† +
i
g0
W∂µW

†, (5.47)

with the gauge transformation W ∈ SU (2), to the connec-
tion G0µ we have found when solving the constraints for
Ỹ0 and φ. The expression for W indeed reads

W = e−if ′′ τ3
2 GXG

†
Y eif τ3

2 . (5.48)

However, since both G0µ and G′′
0µ point in the third di-

rection, we can deduce that W only involves a U (1)τ3

transformation. Therefore, we can choose the function f ′′
so as to have

W = 1. (5.49)

Thus, due to the constraints (5.36) and (5.31), we have
been able to diagonalize all three spurions in the same
gauge, giving

G′′
0µ = G′

0µ = G0µ. (5.50)

We also find that ϕX is a constant, and that

Ra
2µ = g0G

a
0µ, for a = 1, 2, 3. (5.51)

In summary, we have found a gauge in which the spurions
are rewritten as the following constant matrices:

X̃0

∣∣∣
const.

= eiϕX

(
ξ01 0
0 ξ02

)
, (5.52)

Ỹ0

∣∣∣
const.

= eiϕY

(
η01 0
0 η02

)
, (5.53)

φ|const.=
(
ζ

0

)
(5.54)

due to the constraints. In addition, the following connec-
tions are identified:

R1,2
2µ

∣∣∣
const.

= L1,2
0µ

∣∣∣
const.

= g0G
1,2
0µ

∣∣∣
const.

= 0, (5.55)

R3
2µ

∣∣
const.

= L3
0µ

∣∣
const.

= Bµ

∣∣∣
const.

= g0G
3
0µ

∣∣∣
const.

= g0b
0
µ,

(5.56)

This proves the result announced above. Again, the only
invariance left from the original SU (2)L0

× SU (2)G0
×

U (1)B−L is the U (1)Y degree of freedom, under which

b0µ �−→ b0µ − 1
g0
∂µf, (5.57)

with the identification (5.56).
As for the constraints on the real spurions X1, Y1,

DµX1 = 0, (5.58)

DµY1 = 0, (5.59)

they are solved independently, as in Sect. 2.2.1, giving the
following results in the standard gauge:

X1|const.= ξ112×2, (5.60)

Y1|const.= η112× 2, (5.61)

where ξ1 and η1 are real constants, used as expansion pa-
rameters. In this gauge, we have the following identification
of connections:

R1µ|const.= L1µ|const.= g1G1µ. (5.62)

5.2.2 Bosons

Going back to the unconstrained lagrangian, we find
that the O (p2ε0

)
lagrangian for the bosonic sector of this

model is

L(2,0)
bosons =

f2
0

4

〈
DµΣ0,1D

µΣ†
0,1

〉
+
f2
1

4

〈
DµΣ1,2D

µΣ†
1,2

〉

− 1
2

〈G1µνG
µν
1 〉 − 1

2
〈G0µνG

µν
0 〉 . (5.63)
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Solving the constraints on the spurions, (5.63) becomes
in the standard gauge used in Sect. 5.2.1

L(2,0)
bosons

∣∣∣
const.

=
f2
0

4

〈
∇µΣ0,1∇µΣ†

0,1

〉
(5.64)

+
f2
1

4

〈
∇µΣ1,2∇µΣ†

1,2

〉
− 1

2
〈G1µνG

µν
1 〉 − 1

4
b0µνb

0µν ,

where

∇µΣ0,1 = DµΣ0,1|const. (5.65)

= ∂µΣ0,1 − ig0b0µ
τ3

2
Σ0,1 + ig1Σ0,1G1µ,

∇µΣ1,2 = DµΣ1,2|const. (5.66)

= ∂µΣ1,21 − ig1G1µΣ1,2 + ig0b0µΣ1,2
τ3

2
.

We also find plaquette terms18, which are the terms of
lowest order in ε among those which carry no power of p.
They are given by terms of the form〈

Σ0,1X1Y1Σ1,2X̃0Ỹ0

〉
+
〈
Ỹ †

0 X̃
†
0Σ

†
1,2Y

†
1 X

†
1Σ

†
0,1

〉
,(5.67)

and similar ones when one replaces X̃0 and Ỹ0 respectively
by their conjugates X̃c

0 and Ỹ c
0 . There are four such terms,

which give a tree-level mass-squared to the PGBs. We find
therefore that the mass-squared of the PGBs is automati-
cally counted as a small parameter of order O (p0ε4

)
.

We only briefly describe the field redefinitions as they
are analogous to those of Sect. 2.3: after injecting the solu-
tion to the constraints on spurions, we define the Goldstone
boson fields remaining in the spectrum through

U |const.= Σ0,1Σ1,2, (5.68)

and the vector fields according to

g1W1µ|const.= iΣ0,1∇µΣ
†
0,1 − i

α1

g1
U∇µU

†
∣∣∣∣
const.

,(5.69)

where

α1 =
f2
1

f2
0 + f2

1
. (5.70)

We then perform the change of variables{
Ga

1µ, b
0
µ, Σ0,1, Σ1,2

} −→ {
W a

1µ, b
0
µ, U,Σ1,2

}
, (5.71)

to find that Σ1,2 does not appear anymore, due to the
symmetries of the lagrangian. There remains one triplet
of PGBs – collected in the unitary matrix U – with decay
constant fπ, which can be inferred from Sect. 2.3 or 3.3.2
to be

f2
π =

f2
0 f

2
1

f2
0 + f2

1
. (5.72)

The mixing of b0µ andW 3
1µ is identical to the case of Sect. 4,

with the replacement f2
0 �−→ f2

0 + f2
1 .

18 Note that one could in principle use the same spurion for-
malism to order the different possible plaquette terms in little
Higgs models [61] according to an assumed pattern for the
identification of symmetries.

5.2.3 Radiative corrections to the masses of PGBs

The plaquette terms (5.67) do not contribute to the mass
splitting within the PGB triplet. On the other hand, such
a splitting arises from electroweak radiative corrections. A
study of such corrections was first performed for the pions
in the context of low-energy QCD in [35], and reformulated
in the case of effective theories in [20,22]. A consequence of
the WSRs in this context is the softening of divergences in
the one-loop corrections to the PGB masses19: this is then
another interpretation of the fact that the moose models
yield softer corrections to PGB masses20, which has been
the starting point of the little Higgs discussion [23], later
generalized to a broader class of models that do not neces-
sarily have a moose representation [64]21. For simplicity we
will consider the limit where the constant factors in front
of the plaquette terms (5.67) appearing in the lagrangian
are set to zero: the PGBs then have zero tree-level masses.

One may calculate the contribution of electroweak loops
to the mass of the PGBs directly via Feynman diagrams.
However, we wish to explicitly show the implications of
WSRs on this contribution and will therefore resort to the
formulas given in [69], based on Dashen’s results [70]. This
gives the correction to first order in g2

0 as a convolution of
the left–right two-point function studied in Sect. 3, and of
the correlator

〈
0
∣∣Tb0µ (x) b0ν (0)

∣∣ 0〉(
m2

π± −m2
π0

)∣∣
loop

= 4i
g2
0

f2
π

∫
dDx

〈
0
∣∣∣TJ3µ

L0
(x) b0µ (x)J3ν

R2
(0) b0ν (0)

∣∣∣ 0〉

= − g2
0

f2
π

∫
dDx

〈
0
∣∣Tb0µ (x) b0ν (0)

∣∣ 0〉

×
∫

dDq

(2π)D
e−iq·x (ηµνq2 − qµqν

)
ΠLR

(−q2) . (5.73)

However, b0µ is not a physical field, and we have to rewrite
it in terms of Aµ and Zµ: this is the reason why the for-
mula is only the first term in an expansion. The effect of
the full diagonalization is to replace the mass of the third
component of the triplet W a

1µ by M2
Z . When this is done,

we are in a position to express the electroweak PGB mass
shift as (

m2
π± −m2

π0

)∣∣
loop

= i
(D − 1) e2

f2
π

∫
dDq

(2π)D

19 In fact, in the SM, if weak corrections to the pion masses
are considered in addition to the electromagnetic ones, the
divergence is not quadratic, but only logarithmic even without
the first Weinberg sum rule [62].
20 See also [63] in this respect.
21 There are also connections with Randall–Sundrum [65] type
models where EWSB is dictated by boundary conditions [59,60,
66,67], as can be guessed from [68]: see footnote 17. In particular,
the softness of corrections to two-point functions may well be
one aspect of the general asymptotic softness property studied
in [32,33].
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χR

Ỹ0

χL

Y1Σ0,1

X̃0

X1

Σ1,2

G0

G1L0 R2R1 L1

Fig. 5.2. Coupling fermions to the moose of Sect. 5.2.1

×
(

1 +
(s
c

)2 q2

q2 −M2
Z

)
ΠLR

(−q2) , (5.74)

with ΠLR given by (3.22). The constants e, c, s are defined
as in Sect. 4.2. This relation shows that the mass squared
is only logarithmically divergent, and not quadratically di-
vergent, due to the first Weinberg sum rule. This is true in-
dependently of the regularization method used. Note that,
if we were to add at least another internal site to the chain,
and thus one multiplet of resonances, we would get a con-
vergent integral at this order. Finally, we find here(

m2
π± −m2

π0

)∣∣
loop

= −g2
0M

2
W

(
6λ+

1
16π2

(
3 ln
(
M2

Z

µ2

)
+ 2
))

+ O (D − 4) , (5.75)

where the remaining logarithmic divergence is contained
in the constant λ

λ =
µD−4

16π2

(
1

D − 4
− 1

2
(ln 4π − γ + 1)

)
, (5.76)

and has to be canceled by the pole term in the appropri-
ate counter-terms present at higher orders in the effective
lagrangian. Such counter-terms will necessarily involve the
spurions, and in fact, we note that we can build terms
which encompass those of [21] when the constraints on the
spurions are used: the following O (p0ε8

)
term will absorb

the divergences if our expansion allows it to appear at the
same level as one-loop corrections:〈

Ỹ †
0 Ỹ0Σ0,1X1Y1Σ1,2X̃0X̃

†
0Σ

†
1,2Y

†
1 X

†
1Σ

†
0,1

〉
. (5.77)

There are altogether sixteen such possible terms when one
replaces the tilded spurions by their conjugates, though
not all depend on the PGBs due to the relations

X̃0X̃
c†
0 = detX012×2, (5.78)

Ỹ0Ỹ
c†
0 = detY012×2. (5.79)

The fact that these counter-terms have to appear at one-
loop to absorb the divergences to the masses of the PGBs
then allows us to match the counting for the spurion expan-
sionwith that of themomentumexpansion in this particular

case where PGBs remain in the spectrum. We find that
the correspondence between the two expansion parameters
should then read, for our particular K = 1 case,

ε = O
(
p1/2

)
. (5.80)

Note that, from the plaquette terms (5.67), that this au-
tomatically gives in addition

m2
PGBs = O (p2) , (5.81)

and we already mention that, from the results in Sect. 5.2.4,
it would also imply for the fermions

mfermions = O (p1) . (5.82)

Both results are quite satisfactory from the point of view
of reproducing the poles of the corresponding particles
without resummation. Still, for the sake of generality, we
shall refrain from using assumption (5.80) in the remainder
of this paper.

5.2.4 Fermions

We now briefly describe the introduction of fermions in
this model: the procedure is similar to that of Sect. 4. The
model is summarized in Fig. 5.2.

The elementary chiral fermions transform as

χL �−→ G1e−i B−L
2 β0

χL, (5.83)

χR �−→ G0e−i B−L
2 β0

χR, (5.84)

and the identification of U (1) connections is performed
as detailed in Sect. 5.2.1 using the φ spurion. We find the
following O (p2ε0

)
lagrangian for fermions:

L(2,0)
fermions = iχLγ

µDµχL + iχRγ
µDµχR

+ four-fermion interactions, (5.85)

giving the same leading-order couplings as in the SM.
The followingO(p1ε2) terms yieldmasses for the quarks:

L(1,2)
quarks (5.86)

= −m1ijχLiX
†
1Σ

†
0,1Ỹ

†
0 χRj −m∗

1ijχRj Ỹ0Σ0,1X1χLi
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− m2ijχLiX
†
1Σ

†
0,1Ỹ

c†
0 χRj −m∗

2ijχRj Ỹ
c
0Σ0,1X1χLi

− m3ijχLiY1Σ1,2X̃0χRj −m∗
3ijχRjX̃

†
0Σ

†
1,2Y

†
1 χLi

− m3ijχLiY1Σ1,2X̃
c
0χRj −m∗

4ijχRjX̃
c†
0 Σ

†
1,2Y

†
1 χLi,

and there are again enough free parameters available per
fermion doublet for the masses of the two states to be inde-
pendent at tree level. The additional parameters compared
to the previous cases are not relevant for the masses and
mixing, only for the Yukawa terms (see below). The usual
term yielding Majorana masses for right-handed neutrinos
are also present at this level. The power countings are as
in Sect. 4.5.

Note in addition that, whatever the counting for ε is, we
have the result that the masses of the fermions are counted
at the same level as that of the PGBs

m2
fermions,m

2
PGBs = O (ε4) . (5.87)

On the other hand, the scalars remaining in the spectrum
in this model bear little resemblance to the physical Higgs
boson of the SM. In order to study this, one has to define
the unitary gauge fermion fields through

ψL = Σ0,1U1χL, (5.88)

ψR = χR, (5.89)

yielding the same couplings of fermions to vector bosons as
in Sect. 4. These rewritings, together with those involving
the vector bosons, yield a term

i
f2

π

f2
0
ψLγ

µ
(
U∇µU

†)ψL. (5.90)

which involves couplings of the fermions with the PGBs
alone and with the PGBs and the neutral vector fields. The
term linear in the PGB fields in (5.90) can be removed by
a subsequent redefinition

ΨL = e
−i fπ

f2
0

πaτa

ψL, (5.91)

ΨR = ψR, (5.92)

where

U = ei πaτa

fπ . (5.93)

All the other terms involving interactions of the left-handed
fermions with the PGBs are then modified, in particular the
Yukawa terms. The fact that we have a triplet of PGB and
not a single boson – such as the physical Higgs of the SM
– and the remark following (5.86) on the number of terms
imply that there is no simple relation between the masses
and Yukawa couplings of fermions to the PGBs. Still, one
would for instance expect general order-of-magnitude rela-
tions to hold: the Yukawa couplings of the third generation
will be larger, except if particular cancellations occur.

We conclude this section by recalling the salient points
encountered in the discussion of this model: we have pre-
sented the first approximation in the low-energy expansion

for a model of EWSB where the only light particles not yet
discovered at accelerators are a triplet of PGBs. We have
discussed the way this model is derived from the moose
idea, in the framework of effective theories, with emphasis
on the spurion formalism. We have also described the con-
sequences of the Weinberg sum rules derived in Sect. 3 on
the calculation of radiative corrections to the masses of the
PGBs. We have pointed out that the terms we can build
with our spurions do in particular allow us to renormal-
ize the divergence in these masses: there is a connection
with the study of Urech [21], provided we identified the ε
power counting with the proper factors in momentum ex-
pansion (in fact with powers of gauge coupling constants).
It is reassuring to find that this power counting in turn
yields quite sensible results for the power counting of the
masses of scalars and fermions. The three scalars remain-
ing in the spectrum have Yukawa interactions with the
fermions; however the connection between the coupling
constants and the masses is not so direct as would be in
the SM for instance.

6 Conclusion

In this paper, we have proposed to restore naturalness
in Higgs-less EWSB effective theories within a systematic
spurion formulation. The spurion formalism starts with a
symmetry group Snatural, larger than the symmetry group
Sreduced acting on the low-energy degrees of freedom. Both
the restriction of the space of gauge connections and the
coupling of Goldstone bosons to gauge fields follow from
the condition of covariant constancy imposed on the spu-
rions. This constraint effectively reduces the symmetry
to Sreduced.

The spurions in fact play a double role. Their first use
is to select the vacuum alignment of gauge fields Sreduced ⊂
Snatural. This alignment is maintained in the limit of van-
ishing spurions. This effect of spurions is therefore already
visible in the O (p2ε0

)
part of the lagrangian although the

latter does not explicitly involve any spurions. The second
role of the spurions is to provide expansion parameters:
when the constraints are solved in the standard gauge, the
spurions reduce to constants, which we assume to be small.

To begin with a simpler example before focusing on
EWSB, we have first used our spurion formalism in con-
nection with a low-energy description of K vector reso-
nances coupled to the Goldstone bosons of a global chiral
symmetry. The couplings at lowest order in the spurion ex-
pansion are identical to those obtained in the dimensional
deconstruction approach. We therefore have an indepen-
dent and more general bottom-up approach to justify this
choice of leading-order interactions. We have shown that
a set of K generalized Weinberg sum rules follow at tree
level. Corrections will only occur at higher orders in the
spurion expansion.

Turning to EWSB, we have identified the set of spuri-
ons necessary to reduce the natural symmetry to the one
that is gauged: SU (2)×U (1)Y . Known difficulties usually
associated with Higgs-less theories at leading order are
relegated to higher orders in the spurion expansion. This
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concerns O (p2
)

contributions to the S parameter and non-
standard couplings of the fermions to gauge fields (includ-
ing non-universal couplings of the left-handed fermions and
couplings of right-handed fermions to the W±). Another
well-known difficulty of Higgs-less theories is to account
for mass splittings within fermion doublets at the same
chiral order as the masses themselves. This finds a solution
within the spurion formalism: as shown in Sect. 4, the full
CKM structure can be recovered. Also, due to the presence
of the spurion φ, whose leading couplings only appear in
the neutrino sector, lepton number violation is introduced.
One should stress the unifying aspect of the spurion ap-
proach, which offers a simultaneous solution to seemingly
unrelated problems. Indeed, the scope of the formalism
was further illustrated in Sect. 5 with two extensions of the
minimal effective theory of EWSB based on larger natural
symmetries and therefore on a larger set of light states
protected by them. These protected states involve either a
tower of excited vector bosons or PGBs which remain in the
spectrum. Such scalars are kept naturally light but share
little resemblance with the SM Higgs boson. Examination
of the spurion contributions to the tree level as well as to
the radiative masses of the PGBs suggests that the param-
eters ξ and η0 descending from the spurions might be of
chiral order ε = O (p1/2

)
. This in turn would imply that the

leading-order contribution to the (Dirac) fermion masses
arising from spurions be counted as mfermions = O (p1

)
, as

one would expect in a low-energy expansion.
On the other hand, higher orders in the spurion ex-

pansion certainly require a more complete analysis. First,
the assumption of a common power counting, which we
have been using for simplicity, is by no means granted. For
instance, in the generic minimal EWSB effective theory
of Sect. 4, the spurion φ which allows for lepton number
violation need not carry the same power counting as the
real spurion X1 responsible for the identification of two
SU (2) groups or as the complex spurion Ỹ0 responsible for
the selection of the U (1)τ3 group and for the introduction
of isospin breaking. Furthermore, one needs to understand
better how the spurion expansion fits in the whole low-
energy expansion including loops. This requires a study of
the way the powers of coupling constants and the constants
descending from spurions feed back into each other in the
renormalization procedure. A complete loop-level investi-
gation going beyond the partial results of Sect. 5.2.3 would
be in order.

Insight into the magnitude of the spurions relative to
each other and relative to loops could be gained from the
phenomenology of flavor violation, in particular in the lep-
ton sector (using information from rareK decays and from
neutrino experiments for example). There obviously re-
mains a lot of work to be done for the completion of this
program. Needless to say, our formalism may also well be
relevant outside the scope of Higgs-less EWSB.

Acknowledgements. We would like to thank Andreas Nyffeler
for sharing his opinions and knowledge with us, and Bachir
Moussallam for his interest and continuous encouragements. We
also benefited from discussing some of the ideas exposed in this
paper with Marc Knecht, Hagop Sazdjian and Mike Pennington.

This work was supported in part by the European Com-
munity EURIDICE network under contract HPRN-CT-2002-
00311.

A Resonance corrections
to electroweak relations

In this appendix, we give details about calculations for the
oblique parameters for the model of Sect. 5.1: evaluating
the Fermi constant from muon decay, a contribution from
W ′ exchange has to be taken into account, to find

Gµ =
g2
2

4
√

2

(
cos2 γ
M2

W

+
sin2 γ

M2
W ′

)
=

√
2

f2
1
. (A.1)

The effective angle measured in low-energy νN scattering
is then

s2∗ (0) = −g0
g2


 N12N22

M2
Z

+ N13N23
M2

Z′
N2

22
M2

Z
+ N2

23
M2

Z′


 (A.2)

=
g2
0

g2
2 + g2

0
+

1
2g2

1

g2
0g

2
2
(
g2
2 − g2

0
)

(g2
2 + g2

0)2
+ O

(
1
g4
1

)
.

Turning to the comparisonbetweenGµ and the four-fermion
termsgeneratedbyZ andZ ′ exchange, onefinds at tree level

ρ∗ (0) =
g2
2

4
√

2Gµ

(
N2

22

M2
Z

+
N2

23

M2
Z′

)
= 1. (A.3)

This can be understood as the consequence of the custo-
dial symmetry, as noted in [44, 71], in relation with [72].
However this symmetry, embodied here by SU (2)L0

, does
not enforce T = 0, nor ρ = 1, which are different in such
cases [73]. Indeed, to define ρ, we first have to define the
angle appearing in the Z0 couplings

s2f =
1
4

(
1 − gV

gA

)
= −g0N12

g2N22
(A.4)

=
g2
0

g2
2 + g2

0
+

1
2g2

1

g2
0g

2
2
(
g2
2 − g2

0
)

(g2
2 + g2

0)2
+ O

(
1
g4
1

)
,

where gV and gA are the vector and axial couplings of
charged leptons to the Z0. We then find

ρ =
1

1 − s2f

M2
W

M2
Z

= 1 − 1
4
g2
0

g2
1

+ O
(

1
g4
1

)
, (A.5)

and we note that s2∗ (0) and s2f are different:

s2∗ (0) − s2f =
1
8
g2
0g

2
2

g4
1

g2
0 − g2

2

g2
0 + g2

2
+ O

(
1
g6
1

)
. (A.6)

Turning now to theS, T, U parameters, we get, from the def-
inition

Γ
(
Z0 −→ l+l−

)
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=
GµM

3
Z

24
√

2π
(
1 − 4s2f + 8s4f

)
(1 + αT ) (A.7)

the following negative contribution to T :

αT =
g2
2N

2
22

4
√

2GµM2
Z

− 1

= − 1
16g4

1

(
g2
0 − g2

2
)2

+ O
(

1
g6
1

)
. (A.8)

Defining the S and U parameters requires the introduction
of s20 through

s20
(
1 − s20

)
=

πα√
2GµM2

Z

, (A.9)

in order to extract S from the definition

s2f = s20 − s20 (1 − s0)
2

1 − 2s20
αT +

1
4 (1 − 2s20)

αS. (A.10)

The value of the S parameter at tree level has already been
given in Sect. 5.1.2.

Using the definition for U

1
1 − s20

M2
W

M2
Z

= 1 +
1 − s20
1 − 2s20

αT − 1
2 (1 − 2s20)

αS +
1

4s20
αU

(A.11)

yields a positive value for U :

αU =
1

4g4
1
g2
0g

2
2 + O

(
1
g6
1

)
. (A.12)

From all these expressions, one sees how the decoupling
of the W ′ and Z ′ is achieved in the limit g1 −→ +∞, in
which one obtains a shorter moose – that of Sect. 4.
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27. C. Grosse-Knetter, R. Kögerler, Phys. Rev. D 48, 2865

(1993), hep-ph/9212268
28. A. Manohar, H. Georgi, Nucl. Phys. B 234, 189 (1984)
29. H. Georgi, Weak interactions and modern particle theory

(Benjamin/Cummings Publishing 1984)
30. H. Georgi, Phys. Lett. B 298, 187 (1993), hep-ph/9207278
31. S. Chang, H.-J. He (2003), hep-ph/0311177
32. R. Sekhar Chivukula, D.A. Dicus, H.-J. He, Phys. Lett. B

525, 175 (2002), hep-ph/0111016
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